Mineralogical and Geochemical Study of Zhaoping, Xifu and Hami Iron Meteorites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook of Iron Meteorites, Volume 3
Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given. -
A New Sulfide Mineral (Mncr2s4) from the Social Circle IVA Iron Meteorite
American Mineralogist, Volume 101, pages 1217–1221, 2016 Joegoldsteinite: A new sulfide mineral (MnCr2S4) from the Social Circle IVA iron meteorite Junko Isa1,*, Chi Ma2,*, and Alan E. Rubin1,3 1Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, U.S.A. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. 3Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, U.S.A. Abstract Joegoldsteinite, a new sulfide mineral of end-member formula MnCr2S4, was discovered in the 2+ Social Circle IVA iron meteorite. It is a thiospinel, the Mn analog of daubréelite (Fe Cr2S4), and a new member of the linnaeite group. Tiny grains of joegoldsteinite were also identified in the Indarch EH4 enstatite chondrite. The chemical composition of the Social Circle sample determined by electron microprobe is (wt%) S 44.3, Cr 36.2, Mn 15.8, Fe 4.5, Ni 0.09, Cu 0.08, total 101.0, giving rise to an empirical formula of (Mn0.82Fe0.23)Cr1.99S3.95. The crystal structure, determined by electron backscattered diffraction, is aFd 3m spinel-type structure with a = 10.11 Å, V = 1033.4 Å3, and Z = 8. Keywords: Joegoldsteinite, MnCr2S4, new sulfide mineral, thiospinel, Social Circle IVA iron meteorite, Indarch EH4 enstatite chondrite Introduction new mineral by the International Mineralogical Association (IMA 2015-049) in August 2015. It was named in honor of Thiospinels have a general formula of AB2X4 where A is a divalent metal, B is a trivalent metal, and X is a –2 anion, Joseph (Joe) I. -
Meteorites from the Lut Desert (Iran)
Meteorites from the Lut Desert (Iran) Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, Roberto Avillez, Sonia Letichevsky, Morteza Djamali, Hassan Mirnejad, Vinciane Debaille, et al. To cite this version: Hamed Pourkhorsandi, Jérôme Gattacceca, Pierre Rochette, Massimo d’Orazio, Hojat Kamali, et al.. Meteorites from the Lut Desert (Iran). Meteoritics and Planetary Science, Wiley, 2019, 54 (8), pp.1737-1763. 10.1111/maps.13311. hal-02144596 HAL Id: hal-02144596 https://hal-amu.archives-ouvertes.fr/hal-02144596 Submitted on 31 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License doi: 10.1111/maps.13311 Meteorites from the Lut Desert (Iran) Hamed POURKHORSANDI 1,2*,Jerome^ GATTACCECA 1, Pierre ROCHETTE 1, Massimo D’ORAZIO3, Hojat KAMALI4, Roberto de AVILLEZ5, Sonia LETICHEVSKY5, Morteza DJAMALI6, Hassan MIRNEJAD7, Vinciane DEBAILLE2, and A. J. Timothy JULL8 1Aix Marseille Universite, CNRS, IRD, Coll France, INRA, CEREGE, Aix-en-Provence, France 2Laboratoire G-Time, Universite Libre de Bruxelles, CP 160/02, 50, Av. F.D. Roosevelt, 1050 Brussels, Belgium 3Dipartimento di Scienze della Terra, Universita di Pisa, Via S. -
8. Projectile ˜˜˜
8. Projectile ˜˜˜ Meteoritic remnants of the impacting asteroid that produced Barringer Crater littered the landscape when exploration began ~115 years ago. As described in Chapter 1, meteoritic irons are what initially captured Foote’s interest and spurred Barringer’s interest in a possibly rich natural source of native metal. After Foote’s description was published, samples were collected by F. W. Volz at a nearby trading post and sold widely. Gilbert (1896) estimated that 10 tons of meteoritic debris had already been recovered by the time of his visit. Similarly, Barringer (1905) estimated that 10 to 15 tons of it were circulating around the world by the time his exploration work began. Fortunately, he tried to document the geographic and mass distribution of that debris in a detailed map, which is reproduced in Fig. 8.1. The map indicates that meteoritic irons were recovered from distances approaching 10 km. Gilbert (1896) apparently recovered a sample nearly 13 km beyond the crater rim. A lot of the meteoritic material was oxidized. It is sometimes simply called oxidized iron, but large masses are also called shale balls. A concentrated deposit of small oxidized iron fragments was found northeast of the crater, although those types of fragments are distributed in all directions around the crater. The current estimate of the recovered meteoritic iron mass is 30 tons (Nininger, 1949; Grady, 2000), although this is a highly uncertain number. Specimens were transported in pre-historical times and have been found scattered throughout Arizona (see, for example, Wasson, 1968). Specimens have also been illicitly removed in recent times, without any documentation of the locations or masses recovered. -
Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation. -
METEORITES NEWLY FOUND in RUSSIA References
melting crust beneath a thin oxide rind, it is reasonable to suggest that the meteorite fell within a century ago. The other five smaller fragments found at the fall site are METEORITES NEWLY FOUND IN RUSSIA no larger than 7 cm. All of them are also covered by carbonate and iron oxide crusts. The fragments are flattened, ungeometrical, and their sharp uneven edges make them look like chips. Sergei V. Kolisnichenko The identified phases of the meteorite are taenite (30.6 wt.% Ni), kamacite (7.95 wt.% collector, Verkhnyaya Sanarka , Urals, Russia Ni) , and inclusions of troilite and schreibersite (microprobe analyses were conduc- [email protected] ted at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, analyst N.N. Kononkova). The Suzemka is the first meteorite found in Bryansk oblast. ussia's collection of meteorites received two newly found meteorites in Uakit . The Uakit meteorite was found in summer 2016 on the stream terrace of 2017, which are registered in the international Meteoritical Bulletin Mukhtunnyiy Creek, a left-hand tributary of the Uakit River, 4 km west of the village R Database as the Suzemka (Meteoritical Bulletin, 2017 ) and Uakit of Uakit, Evenkiyskiy district, Buryatia (found at 55° 29'47.50'' N, 113°33'47.98''E). 1 (Meteoritical Bulletin, 2017 ) iron meteorites. The meteorite was found by a group of small diggers (O.Yu. Korshunov and others) 2 at a gold deposit. Suzemka . The Suzemka meteorite was found in Bryansk oblast (territory) near the town of Suzemka on July 18, 2015 (at 52°20.25'N, 34°3.24'E). -
Evolution of Asteroidal Cores 747
Chabot and Haack: Evolution of Asteroidal Cores 747 Evolution of Asteroidal Cores N. L. Chabot The Johns Hopkins Applied Physics Laboratory H. Haack University of Copenhagen Magmatic iron meteorites provide the opportunity to study the central metallic cores of aster- oid-sized parent bodies. Samples from at least 11, and possibly as many as 60, different cores are currently believed to be present in our meteorite collections. The cores crystallized within 100 m.y. of each other, and the presence of signatures from short-lived isotopes indicates that the crystallization occurred early in the history of the solar system. Cooling rates are generally consistent with a core origin for many of the iron meteorite groups, and the most current cooling rates suggest that cores formed in asteroids with radii of 3–100 km. The physical process of core crystallization in an asteroid-sized body could be quite different than in Earth, with core crystallization probably initiated by dendrites growing deep into the core from the base of the mantle. Utilizing experimental partitioning values, fractional crystallization models have ex- amined possible processes active during the solidification of asteroidal cores, such as dendritic crystallization, assimilation of new material during crystallization, incomplete mixing in the molten core, the onset of liquid immiscibility, and the trapping of melt during crystallization. 1. INTRODUCTION ture of the metal and the presence of secondary minerals, are also considered (Scott and Wasson, 1975). In the first From Mercury to the moons of the outer solar system, attempt to classify iron meteorites, groups I–IV were de- central metallic cores are common in the planetary bodies fined on the basis of their Ga and Ge concentrations. -
The Tawallah Valley Meteorite. General Description. the Microstructure.Records of the Australian Museum 21(1): 1–8, Plates I–Ii
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Hodge-Smith, T., and A. B. Edwards, 1941. The Tawallah Valley meteorite. General description. The Microstructure.Records of the Australian Museum 21(1): 1–8, plates i–ii. [4 July 1941]. doi:10.3853/j.0067-1975.21.1941.518 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia THE TAW ALLAH VALLEY METEORITE. General Description. By T. HODGE-SMI'l'H, The Australian Museum. The Microstructure. By A. B. EDWARDS, Ph.D., D.I.C.,* Research Officer, Mineragraphy Branch, Council for Scientific and Industrial Research. (Plates i-ii and Figures 1-2.) General Description. Little information is available about the finding of this meteorite. Mr. Heathcock, Constable-in-Charge of the Borroloola Police Station, Northern Territory, informed me in April, 1939, that it had been in the Police Station for eighteen months or more. It was found by Mr. Condon, presumably some time in 1937. The weight of the iron as received was 75·75 kg. (167 lb.). A small piece had been cut off, but its weight probably did not exceed 200 grammes. The main mass weighing 39·35 kg. (86i lb.) is in the collection of the Geological Survey, Department of the Interior, Canberra. A portion weighing 30·16 kg. (66~ lb.) and five pieces together weighing 1·67 kg. are in the collection of the Australian Museum, and a slice weighing 453 grammes is in the Museum of the Geology Department, the University of Melbourne. -
ELEMENTAL ABUNDANCES in the SILICATE PHASE of PALLASITIC METEORITES Redacted for Privacy Abstract Approved: Roman A
AN ABSTRACT OF THE THESIS OF THURMAN DALE COOPER for theMASTER OF SCIENCE (Name) (Degree) in CHEMISTRY presented on June 1, 1973 (Major) (Date) Title: ELEMENTAL ABUNDANCES IN THE SILICATE PHASE OF PALLASITIC METEORITES Redacted for privacy Abstract approved: Roman A. Schmitt The silicate phases of 11 pallasites were analyzed instrumen- tally to determine the concentrations of some major, minor, and trace elements.The silicate phases were found to contain about 98% olivine with 1 to 2% accessory minerals such as lawrencite, schreibersite, troilite, chromite, and farringtonite present.The trace element concentrations, except Sc and Mn, were found to be extremely low and were found primarily in the accessory phases rather than in the pure olivine.An unusual bimodal Mn distribution was noted in the pallasites, and Eagle Station had a chondritic nor- malized REE pattern enrichedin the heavy REE. The silicate phases of pallasites and mesosiderites were shown to be sufficiently diverse in origin such that separate classifications are entirely justified. APPROVED: Redacted for privacy Professor of Chemistry in charge of major Redacted for privacy Chairman of Department of Chemistry Redacted for privacy Dean of Graduate School Date thesis is presented June 1,1973 Typed by Opal Grossnicklaus for Thurman Dale Cooper Elemental Abundances in the Silicate Phase of Pallasitic Meteorites by Thurman Dale Cooper A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1974 ACKNOWLEDGMENTS The author wishes to express his gratitude to Prof. Roman A. Schmitt for his guidance, suggestions, discussions, and thoughtful- ness which have served as an inspiration. -
N Arieuican%Mllsellm
n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History. -
A New Meteoric Iron from Piedade Do Bagre, Minas Geraes, Brazil
271 A new meteoric iron from Piedade do Bagre, Minas Geraes, Brazil. (With Plates XI and XII.) By L. J. SPENCER, M.A., Sc.D., F.R.S. With a chemical analysis by M. It. HEY, B.A., B.Se. Mineral Department, British Museum of Natural History. [Read June 3, 1930.] MASS of iron weighing 130 lb., stated to have been found in A 1922 near the village of Piedade do Bagre in Minas Geraes, Brazil, and believed to be meteoric, was submitted by Mr. N. Medawar in January 1929 to the Mineral Department of the British Museum for examination. The following description of the mass fully confirms the supposition of its meteoric origin. Unfortunately, only scanty details are available of the circumstances of the finding of the mass. All the information that Mr. Medawar was able to supply is given in the following short note written by Mr. R. J. Bohrer, with a rough sketch-map of the locality. Meteorito encontrado no ponto mareado +. Vendido por intermedio do Snr. Padre Jos6 Alves de Curvello a Rodolpho J. Bohrer. Encontrado em 1922 por um situante cujo nome n~o se conhece. Vendido a Snr. Medawar em Margo de 1927. Mr. Medawar's translation of this is : Meteorite found at the point marked +. Sold by the intermediary of Mr. Padre Jos6 Alves of Curvello to Rodolpho J. Bohrer. Found in 1922 by a local native whose name not known. Sold to Mr. Medawar in March of 1927. The spot marked is about 16 km. (10 miles) SW. of the village of Piedade do Bagre in Minas Geraes. -
Cohenite in Chondrites: Further Support for a Shock- Heating Origin L
76th Annual Meteoritical Society Meeting (2013) 5145.pdf Cohenite in Chondrites: Further Support for a Shock- Heating Origin L. Likkel1, A.M. Ruzicka2, M. Hutson2, K. Schepker2, and T.R. Yeager1. 1University of Wisconsin–Eau Claire, Department of Physics and Astronomy. E-mail: [email protected]. 2Cascadia Meteorite Laboratory, Portland State University, Oregon, USA. Introduction: The iron-nickel carbide cohenite [(Fe,Ni)3C] is mainly known from iron meteorites but has been found also in some chondrites. It was suggested that cohenite formed in some chondrites by a process of shock-induced contact metamorphism involving heating by adjacent shock melts [1]. Methods: Two meteorite thin sections were chosen for inves- tigation including NWA5964 (CML0175-4-3), an L3-6 chondrite known to have cohenite and containing a large shock melt region [1]. Another sample in which we identified cohenite was select- ed, Buck Mountain Wash (CML0236-3A), an H3-6 chondrite with a smaller shock melt region [2, 3]. We used reflected light optical microscopy to locate each co- henite grain in the thin sections to determine whether cohenite is spatially related to shock melt areas. SEM was used to confirm that the mineral identified as cohenite was not schreibersite, which appears nearly identical to cohenite in reflected light. Results: Shock melt covers most of CML0175-4-3, and some of the adjacent unmelted chondrite host appears to be darkened. Over 50 occurrences of cohenite were found in the sample, locat- ed preferentially at the edge of the melt and excluded from the small areas where the host remained undarkened.