Common Snakes of the Fraser Coast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guidelines for Keeping Venomous Snakes in the NT
GUIDELINES FOR KEEPING VENOMOUS SNAKES IN THE NT Venomous snakes are potentially dangerous to humans, and for this reason extreme caution must be exercised when keeping or handling them in captivity. Prospective venomous snake owners should be well informed about the needs and requirements for keeping these animals in captivity. Permits The keeping of protected wildlife in the Northern Territory is regulated by a permit system under the Territory Parks and Wildlife Conservation Act 2006 (TPWC Act). Conditions are included on permits, and the Parks and Wildlife Commission of the Northern Territory (“PWCNT”) may issue infringement notices or cancel permits if conditions are breached. A Permit to Keep Protected Wildlife enables people to legally possess native vertebrate animals in captivity in the Northern Territory. The permit system assists the PWCNT to monitor wildlife kept in captivity and to detect any illegal activities associated with the keeping of, and trade in, native wildlife. Venomous snakes are protected throughout the Northern Territory and may not be removed from the wild without the appropriate licences and permits. People are required to hold a Keep Permit (Category 1–3) to legally keep venomous snakes in the Northern Territory. Premises will be inspected by PWCNT staff to evaluate their suitability prior to any Keep Permit (Category 1– 3) being granted. Approvals may also be required from local councils, the Northern Territory Planning Authority, and the Department of Health and Community Services. Consignment of venomous snakes between the Northern Territory and other States and Territories can only be undertaken with an appropriate import / export permit. There are three categories of venomous snake permitted to be kept in captivity in the Northern Territory: Keep Permit (Category 1) – Mildly Dangerous Venomous Keep Permit (Category 2) – Dangerous Venomous Keep Permit (Category 3) – Highly Dangerous Venomous Venomous snakes must be obtained from a legal source (i.e. -
Operational Control of the Brown Tree Snake on Guam
OPERATIONAL CONTROL OF THE BROWN TREE SNAKE ON GUAM THOMAS C. HALL, USDA/APHIS/ADC, 2800 N. Lincoln Blvd., Oklahoma City, Oklahoma 73105. ABSTRACT: An operational control program for brown tree snakes (Boiga i"egularis) on Guam began in April 1993. The program focused on minimizing the dispersal of brown tree snakes to other Pacific islands and the U.S. mainland. During the first year of operation, more than 3,000 snakes were caught within a kilometer of high risk port facilities using traps, detector dogs, and spotlighting. Additionally, habitat modifications and prey-base removal were used to reduce the attractiveness of these facilities to brown tree snakes. Public awareness was also an important part of the program such as the education of cargo packers, shippers, and Customs inspectors who could further minimiu brown tree snake dispersal off-island. Initial control efforts in the program became more efficient with the recognition of brown tree snake characteristics, i.e., it was discovered that perimeter trapping a 5 ha patch of jungle was sufficient to remove most snakes instead of saturating the area with traps. KEY WORDS: brown tree snake, snake control Proc. 17th Vertebr. Pest Conf. (R.M. Timm & A.C. Crabb, Eds.) Published at Univ. of Calif., Davis. 1996. INTRODUCTION methods for resolving the problem. Background Brown tree snakes have caused significant information is given here so that the complexity of this environmental and economic impacts since their problem can be understood. inadvertent introduction to the island of Guam in the late 1940s. Other islands in the Pacific and the U.S. -
Stop the Brown Tree- Snake
BROWN TREESNAKES WHAT TO DO FOUND IN HAWAI‘I IF YOU SEE A SNAKE APRIL 1981: A live snake is found crawling in 1. Call the Pest Hotline immediately: 643- the customs area at the Honolulu Airport. PEST. Monitor the snake until trained authorities arrive. If the snake is resting or JULY 1981: A dead snake is found at Barbers hiding in an enclosed area, do not disturb it. Point Naval Air Station. 2. If it is moving and you are unable to contain MAY 1986: A live snake is found on a post it, track its location until authorities arrive. guide-wire at Hickam Air Force Base. 3. If the snake attempts to flee, and it is safe to OCTOBER 1989: A dead snake is found next to do so, kill it by striking the back of its head a cargo jet at Hickam Air Force Base. with a heavy object, or cut it in half with a machete or other implement. SEPTEMBER 1991: A dead snake is found on a runway at Honolulu Airport and a live snake 4. If the snake is dead, put it in a plastic bag is found under a cargo jet at Hickam Air Force labeled with the location, date and time of Base. capture. Store it in the freezer for pick up and examination by authorities. DECEMBER 1994: A live snake is discovered in a warehouse on Schofield Barracks. 5. If you have a pet snake, voluntarily turn it in by calling 643-PEST which offers immunity AUGUST 1998: A dead snake is found in the from prosecution. -
Myths Surrounding Snakes
MYTHS SURROUNDING SNAKES MYTH 1: Bites from baby venomous snakes are more dangerous than those from adults because they always deliver a full dose of venom. The legend goes that young snakes have not yet learned how to control the amount of venom they inject. They are therefore more dangerous than adult snakes, which will restrict the amount of venom they use in a bite or “dry bite”. This is simply untrue and all the evidence points towards bites from adults being more severe. Tests have shown that juvenile snakes can control their venom just as much as adults. Furthermore lets consider the following factors: adults have significantly larger fangs to deliver their venom and considerably more venom available than a juvenile. Therefore if a juvenile has venom glands only big enough to hold a 2ml of venom compared to an adult that can hold 30ml or more, then the bite from an adult will always have the potential to be more severe. I presume the reason this myth came into existence was to dissuade people from having a carefree attitude towards the potential dangers of a juvenile snake. The moral of the story is to treat every snake as a potentially dangerous and never expose your self to a situation where a snake of any size can bite you. MYTH 2: If you see a snake they’ll always be more Although it is possible to see more than one snake, for the most part this statement is untrue. Snakes are solitary animals for most of their lives so generally you will only ever encounter individuals. -
Proteomic and Genomic Characterisation of Venom Proteins from Oxyuranus Species
This file is part of the following reference: Welton, Ronelle Ellen (2005) Proteomic and genomic characterisation of venom proteins from Oxyuranus species. PhD thesis, James Cook University Access to this file is available from: http://eprints.jcu.edu.au/11938 Chapter 1 Introduction and literature review Chapter 1 Introduction and literature review 1.1 INTRODUCTION Animal venoms are an evolutionary adaptation to immobilise and digest prey and are used secondarily as a defence mechanism (Tu and Dekker, 1991). Intriguingly, evolutionary adaptations have produced a variety of venom proteins with specific actions and targets. A cocktail of protein and peptide toxins have varying molecular compositions, and these unique components have evolved for differing species to quickly and specifically target their prey. The compositions of venoms differ, with components varying within the toxins of spiders, stinging fish, jellyfish, octopi, cone shells, ticks, ants and snakes. Toxins have evolved for the varying mode of actions within different organisms, yet many enzymes are common to different venoms including L-amino oxidases, esterases, aminopeptidases, hyaluronidases, triphosphatases, alkaline phosphomonoesterases, 2 2 phospholipases, phosphodiesterases, serine-metalloproteases and Ca +IMg +-activated proteases. The enzymes found in venoms fall into one or more pharmacological groups including those which possess neurotoxic (causing paralysis or interfering with nervous system function), myotoxic (damaging muscle), haemotoxic (affecting the blood, -
Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published. -
Very Venomous, But...- Snakes of the Wet Tropics
No.80 January 2004 Notes from Very venomous but ... the Australia is home to some of the most venomous snakes in the world. Why? Editor It is possible that strong venom may little chance to fight back. There are six main snake families have evolved chiefly as a self-defence in Australia – elapids (venomous strategy. It is interesting to look at the While coastal and inland taipans eat snakes, the largest group), habits of different venomous snakes. only mammals, other venomous colubrids (‘harmless’ snakes) Some, such as the coastal taipan snakes feed largely on reptiles and pythons, blindsnakes, filesnakes (Oxyuranus scutellatus), bite their frogs. Venom acts slowly on these and seasnakes. prey quickly, delivering a large amount ‘cold-blooded’ creatures with slow of venom, and then let go. The strong metabolic rates, so perhaps it needs to Australia is the only continent venom means that the prey doesn’t be especially strong. In addition, as where venomous snakes (70 get far before succumbing so the many prey species develop a degree of percent) outnumber non- snake is able to follow at a safe immunity to snake venom, a form of venomous ones. Despite this, as distance. Taipans eat only mammals – evolutionary arms race may have been the graph on page one illustrates, which are able to bite back, viciously. taking place. very few deaths result from snake This strategy therefore allows the bites. It is estimated that between snake to avoid injury. … not necessarily deadly 50 000 and 60 000 people die of On the other hand, the most Some Australian snakes may be snake bite each year around the particularly venomous, but they are world. -
Comparative Studies of the Venom of a New Taipan Species, Oxyuranus Temporalis, with Other Members of Its Genus
Toxins 2014, 6, 1979-1995; doi:10.3390/toxins6071979 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Comparative Studies of the Venom of a New Taipan Species, Oxyuranus temporalis, with Other Members of Its Genus Carmel M. Barber 1, Frank Madaras 2, Richard K. Turnbull 3, Terry Morley 4, Nathan Dunstan 5, Luke Allen 5, Tim Kuchel 3, Peter Mirtschin 2 and Wayne C. Hodgson 1,* 1 Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia; E-Mail: [email protected] 2 Venom Science Pty Ltd, Tanunda, South Australia 5352, Australia; E-Mails: [email protected] (F.M.); [email protected] (P.M.) 3 SA Pathology, IMVS Veterinary Services, Gilles Plains, South Australia 5086, Australia; E-Mails: [email protected] (R.K.T.); [email protected] (T.K.) 4 Adelaide Zoo, Adelaide, South Australia 5000, Australia; E-Mail: [email protected] 5 Venom Supplies, Tanunda, South Australia, South Australia 5352, Australia; E-Mails: [email protected] (N.D.); [email protected] (L.A.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-3-9905-4861; Fax: +61-3-9905-2547. Received: 5 May 2014; in revised form: 11 June 2014 / Accepted: 16 June 2014 / Published: 2 July 2014 Abstract: Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. -
Distribution of Cane Toads (Rhinella Marina) in Florida and Their Status in Natural Areas
DISTRIBUTION OF CANE TOADS (RHINELLA MARINA) IN FLORIDA AND THEIR STATUS IN NATURAL AREAS By AUDREY C. WILSON A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2016 © 2016 Audrey C. Wilson To my family ACKNOWLEDGMENTS I would like to thank my advisor, Steve A. Johnson, for his guidance throughout this project and for providing financial support. I am grateful to my committee members, Christina Romagosa and Betsie Rothermel, for their constant support. Jamie Barichivich provided invaluable advice during the planning and analysis of my thesis. The USGS loaned me the equipment necessary for the fieldwork, without which this project would not have been possible. Camila Rodriguez frequently assisted me in the field. James Colee from IFAS statistical consulting helped with analysis. I am also grateful to the faculty, students, and staff of the Department of Wildlife Ecology and Conservation for their patience and support. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ............................................................................................ -
Snake Venom Detection Kit (SVDK)
SVDK Template In non-urgent situations, serum or plasma may also be used. Other samples such as lymphatic fluid, tissue fluid or extracts may 8. Reading Colour Reactions be used. • Place the test strip on the template provided over page and observe each well continuously over the next 10 minutes whilst the colour develops. Any test sample used in the SVDK must be mixed with Yellow Sample Diluent (YSD-yellow lid), prior to introduction into the The first well to show visible colour, not including the positive control well, is assay. Samples mixed with YSD should be clearly labelled with the patient’s identity and the type of sample used. The volume of diagnostic of the snake’s venom immunotype – see interpretation below. YSD in each sample vial is sufficient to allow retesting of the sample or referral to a reference laboratory for further investigation. Well 1 Tiger Snake Immunotype Snake Venom Detection Kit (SVDK) Note: Strict adherence to the 10 minute observation period after addition of Tiger Snake Antivenom Indicated Detection and Identification of Snake Venom SAMPLE PREPARATION the Chromogen and Peroxide Solutions is essential. Slow development of 1. Prepare the Test Sample. colour in one or more wells after 10 minutes should not be interpreted ENZYME IMMUNOASSAY METHOD • Any test sample used in the SVDK must be mixed with Yellow Sample Diluent (YSD-yellow lid), prior to introduction as positive detection of snake venom. Well 2 Brown Snake Immunotype into the assay. INTERPRETATION OF RESULTS Brown Snake Antivenom Indicated Note: There is enough YSD in one vial to perform two snake venom detection tests. -
Nest Sites, Clutch Size and Incubation Behavior in the Golden White-Eye
j. Field Ornithol., 65(1):65-69 NEST SITES, CLUTCH SIZE AND INCUBATION BEHAVIOR IN THE GOLDEN WHITE-EYE COLLEEN M. STINSON USDA Sod Conservatzon Service P.O. Box 5082 Saipan,MP 96950 USA DEREK W. STINSON 1 Dwzsionof Fzshand Wildhfe Commonwealthof the Northern ,VlarzanaIslands Saipan,MP 96950 USA Abstract.--The GoldenWhite-eye (Cleptornismarchez), a little-known endemicof the Mar- iana Islandsin the westernPacific, neststhroughout the year in a variety of forestedand semi-openhabitats. Data from 11 nestsindicate the typical clutch size is two. Incubation at three nestslasted 14 d and the altricial young fledge 10-14 d after hatching.The parents seemto shareequally in broodingand rearing tasksduring daylight. LUGARESDE ANIDAMIENTO, TAMAI•IO DE LA CAMADAY CONDUCTA DE INCUBACI(SN DE CLEPTORNIS MARCHEl Sinopsis.--Cleptormsmarchei es una especieendSmica de las Islas Marianas, de la cual se conocemuy poco.E1 ave anida a travis de todo el afio en una gran variedadde habitats forestadosy semi-abiertos.E1 tamafiotipico de la camadaes de dos huevos(n = 11). En tres nidosestudiados el periodode incubaci6nresult6 set de 14 dias y los pichones,que son altriciales, dejaron el nido de 10 a 14 dias luego de haber nacido. Los adultos parecen compartirde igual forma la incubaci6ny cuidadode los pichonesdurante las horasdiurnas. The Golden White-eye (Cleptornismarchei), is a little known endemic to Saipanand Aguiguanin the Mariana Islands(Fig. 1). It was previously consideredan aberrant honeyeater(Meliphagidae), but is now considered a white-eye (Zosteropidae)perhaps related to Rukia (Bruce 1978, Pratt et al. 1987, Sibley and Monroe 1990). Although the Golden White-eye is common in all wooded habitats, the nesting behavior has not been previouslydescribed (Craig 1990, Engbring et al. -
An Overview of the Biology of the Brown Treesnake* (Boiga Irregularis), a Costly Introduced Pest on Pacific Islands
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service April 1999 An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands Gordon H. Rodda Thomas H. Fritts Michael J. McCoid Earl W. Campbell III Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Environmental Sciences Commons Rodda, Gordon H.; Fritts, Thomas H.; McCoid, Michael J.; and Campbell, Earl W. III, "An Overview of the Biology of the Brown Treesnake* (Boiga irregularis), a Costly Introduced Pest on Pacific Islands" (1999). USDA National Wildlife Research Center - Staff Publications. 659. https://digitalcommons.unl.edu/icwdm_usdanwrc/659 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 2 An Overview of the Biology of the Brown Treesna ke* ( Boigo irreguluris), a Costly Introduced Pest on Pacific Islands THE GENUS BOlGA The 2&30 species of the genus Boiga (Colubridae, Boiginae) range from tropical Africa through southern Asia to Melanesia and Australia (Leviton, 1968). Collec- tively, they are known as catsnakes, mangrove snakes, or treesnakes (Obst et al., 1988; Greene, 1989). The common name "catsnakes" is sometimes used for snakes in the genus Telescopus as well (Obst et 1,1988).