2D Hexagonal Cellular Automata: The Complexity of Forms Vural Erdogan
[email protected] Abstract — We created two-dimensional hexagonal cellular an essential role in building new structures. The gliders, the automata to obtain complexity by using simple rules same as blinkers and the other oscillators such these might enhance the Conway’s game of life. Considering the game of life rules, complexity of patterns. Wolfram's works about life-like structures and John von Neumann's self-replication, self-maintenance, self-reproduction Another famous rule of CA is Stephen Wolfram’s problems, we developed 2-states and 3-states hexagonal growing “elementary cellular automata” [3] that inspired Alife scientists algorithms that reach large populations through random initial remarkably due to the complexity of rule 30 that was created in states. Unlike the game of life, we used six neighbourhoods cellular a one-dimensional environment. After his systematic studies automata instead of eight or four neighbourhoods. First about complex cellular automata, he published “A New Kind of simulations explained that whether we are able to obtain sort of Science” [4] in 2002 that demonstrates cellular automata can be oscillators, blinkers and gliders. Inspired by Wolfram's 1D related to many fields. cellular automata complexity and life-like structures, we simulated 2D synchronous, discrete, deterministic cellular Besides these, one of the pioneers of cellular automata, John automata to reach life-like forms with 2-states cells. The life-like von Neumann, investigated self-replication and self- formations and the oscillators have been explained how they reproduction problems to build a “universal constructor” that is contribute to initiating self-maintenance together with self- a self-replicating machine building own copies by using reproduction and self-replication.