Carmela Fischetti Phd Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Vitro Pharmacological Characterization of a Novel Unbiased NOP Receptor-Selective Nonpeptide Agonist AT-403 Federica Ferrari1, Davide Malfacini1, Blair V
ORIGINAL ARTICLE In vitro pharmacological characterization of a novel unbiased NOP receptor-selective nonpeptide agonist AT-403 Federica Ferrari1, Davide Malfacini1, Blair V. Journigan2, Mark F. Bird3, Claudio Trapella4, Remo Guerrini4, David G. Lambert3, Girolamo Calo’1 & Nurulain T. Zaveri2 1Section of Pharmacology, Department of Medical Sciences and National Institute of Neurosciences University of Ferrara, Ferrara, Italy 2Astraea Therapeutics, LLC. 320 Logue Avenue, Mountain View, California 3Division of Anaesthesia, Department of Cardiovascular Sciences, University of Leicester, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, United Kingdom 4Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy Keywords Abstract BRET arrestin assay, functional selectivity, GPCR signaling bias, ligand bias, nonpeptide Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via NOP agonists, NOP receptor selective activation of the N/OFQ receptor (NOP), a member of the opioid receptor family. We recently identified a new high affinity and highly selective Correspondence NOP agonist AT-403. In this study, we characterized the functional profile of Nurulain T. Zaveri, Astraea Therapeutics, 320 AT-403 and compared it to other known nonpeptide NOP agonists Ro 65- Logue Avenue, Suite 142, Mountain View, 6570, Ro 2q, SCH-221510, MCOPPB, AT-202 and SCH-486757, using the fol- CA 94043. Tel: 650 254 0786; lowing assays: GTPc[35S] stimulated binding, calcium mobilization assay in Fax: 1 844 457 7470; E-mail: [email protected] cells-expressing human NOP or classical opioid receptors and chimeric G pro- teins, bioluminescence resonance energy transfer (BRET) based assay for study- Funding Information ing NOP receptor interaction with G protein and arrestin, and the electrically This work was supported by funds from the stimulated mouse vas deferens bioassay. -
Design and Synthesis of Cyclic Analogs of the Kappa Opioid Receptor Antagonist Arodyn
Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn By © 2018 Solomon Aguta Gisemba Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Dr. Michael Rafferty Dr. Teruna Siahaan Dr. Thomas Tolbert Date Defended: 18 April 2018 The dissertation committee for Solomon Aguta Gisemba certifies that this is the approved version of the following dissertation: Design and synthesis of cyclic analogs of the kappa opioid receptor antagonist arodyn Chair: Dr. Blake Peterson Co-Chair: Dr. Jane Aldrich Date Approved: 10 June 2018 ii Abstract Opioid receptors are important therapeutic targets for mood disorders and pain. Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and 1,2,3 4 8 depression. Arodyn (Ac[Phe ,Arg ,D-Ala ]Dyn A(1-11)-NH2), an acetylated dynorphin A (Dyn A) analog, has demonstrated potent and selective KOR antagonism, but can be rapidly metabolized by proteases. Cyclization of arodyn could enhance metabolic stability and potentially stabilize the bioactive conformation to give potent and selective analogs. Accordingly, novel cyclization strategies utilizing ring closing metathesis (RCM) were pursued. However, side reactions involving olefin isomerization of O-allyl groups limited the scope of the RCM reactions, and their use to explore structure-activity relationships of aromatic residues. Here we developed synthetic methodology in a model dipeptide study to facilitate RCM involving Tyr(All) residues. Optimized conditions that included microwave heating and the use of isomerization suppressants were applied to the synthesis of cyclic arodyn analogs. -
Opioid Receptorsreceptors
OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors. -
2, 6-Dimethylphenylalanine: a Useful Aromatic Amino Acid Surrogate For
Hindawi Publishing Corporation International Journal of Medicinal Chemistry Volume 2012, Article ID 498901, 11 pages doi:10.1155/2012/498901 Review Article 2,6-Dimethylphenylalanine: A Useful Aromatic Amino Acid Surrogate for Tyr or Phe Residue in Opioid Peptides Yusuke Sasaki and Akihiro Ambo Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan Correspondence should be addressed to Yusuke Sasaki, [email protected] Received 31 January 2012; Revised 15 March 2012; Accepted 18 March 2012 Academic Editor: Yoshio Okada Copyright © 2012 Y. Sasaki and A. Ambo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Two aromatic amino acids, Tyr1 and Phe3 or Phe4, are important structural elements in opioid peptides because they interact with opioid receptors. The usefulness of an artificial amino acid residue 2,6-dimethylphenylalanine (Dmp) was investigated as an aromatic amino acid surrogate for several opioid peptides, including enkephalin, dermorphin, deltorphin, endomorphin, dynorphin A, and nociceptin peptides. In most peptides, substitutions of Phe3 byaDmpresidueproducedanalogswithimproved receptor-binding affinity and selectivity, while the same substitution of Phe4 induced markedly reduced receptor affinity and selectivity. Interestingly, replacement of Tyr1 by Dmp produced analogs with unexpectedly high affinity or produced only a slight drop in receptor affinity and bioactivity for most peptides. Thus, Dmp is also a useful surrogate for the N-terminal Tyr residue in opioid peptides despite the lack of a phenolic hydroxyl group, which is considered necessary for opioid activity. -
NIDA Drug Supply Program Catalog, 25Th Edition
RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25 -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
WO 2017/066488 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/066488 A l 2 0 April 2017 (20.04.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/485 (2006.01) A61P 25/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/5415 (2006.01) A61P 1/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/0569 10 HN, HR, HU, ID, IL, EST, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 13 October 2016 (13.10.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/240,965 13 October 2015 (13. 10.2015) US (84) Designated States (unless otherwise indicated, for every 62/300,014 25 February 2016 (25.02.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CHARLESTON LABORATORIES, INC. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0144429 A1 Wensley Et Al
US 2014O144429A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0144429 A1 Wensley et al. (43) Pub. Date: May 29, 2014 (54) METHODS AND DEVICES FOR COMPOUND (60) Provisional application No. 61/887,045, filed on Oct. DELIVERY 4, 2013, provisional application No. 61/831,992, filed on Jun. 6, 2013, provisional application No. 61/794, (71) Applicant: E-NICOTINE TECHNOLOGY, INC., 601, filed on Mar. 15, 2013, provisional application Draper, UT (US) No. 61/730,738, filed on Nov. 28, 2012. (72) Inventors: Martin Wensley, Los Gatos, CA (US); Publication Classification Michael Hufford, Chapel Hill, NC (US); Jeffrey Williams, Draper, UT (51) Int. Cl. (US); Peter Lloyd, Walnut Creek, CA A6M II/04 (2006.01) (US) (52) U.S. Cl. CPC ................................... A6M II/04 (2013.O1 (73) Assignee: E-NICOTINE TECHNOLOGY, INC., ( ) Draper, UT (US) USPC ..................................................... 128/200.14 (21) Appl. No.: 14/168,338 (57) ABSTRACT 1-1. Provided herein are methods, devices, systems, and computer (22) Filed: Jan. 30, 2014 readable medium for delivering one or more compounds to a O O Subject. Also described herein are methods, devices, systems, Related U.S. Application Data and computer readable medium for transitioning a Smoker to (63) Continuation of application No. PCT/US 13/72426, an electronic nicotine delivery device and for Smoking or filed on Nov. 27, 2013. nicotine cessation. Patent Application Publication May 29, 2014 Sheet 1 of 26 US 2014/O144429 A1 FIG. 2A 204 -1 2O6 Patent Application Publication May 29, 2014 Sheet 2 of 26 US 2014/O144429 A1 Area liquid is vaporized Electrical Connection Agent O s 2. -
Dermorphin Elisa Kit Instructions Product # 181919, 181916 Forensic Use Only
Neogen Corporation 944 Nandino Blvd., Lexington KY 40511 USA 800/477-8201 USA/Canada | 859/254-1221 Fax: 859/255-5532 | E-mail: [email protected] | Web: www.neogen.com/Toxicology DERMORPHIN ELISA KIT INSTRUCTIONS PRODUCT # 181919, 181916 FORENSIC USE ONLY INTENDED USE: For the determination of trace quantities of Dermorphin in urine, serum and plasma. DESCRIPTION Neogen Corporation’s Dermorphin ELISA (Enzyme-Linked ImmunoSorbent Assay) test kit is a qualitative kit designed for use as a screening device for the detection of Dermorphin. The kit was designed for screening purposes and is intended for forensic use only. It is recommended that all suspect samples be confirmed by a quantitative method such as gas chromatography/mass spectrometry (GC/MS). ASSAY PRINCIPLES Neogen Corporation’s test kit operates on the basis of competition between the drug or its metabolite in the sample and the drug-enzyme conjugate for a limited number of antibody binding sites. First, the sample or control is added to the microplate and incubated at room temperature for 30 minutes. Next, the diluted drug-enzyme conjugate is added and the mixture is incubated for 30 minutes at room temperature. During this incubation, the drug in the sample or the drug-enzyme conjugate binds to antibody immobilized in the microplate wells. After incubation, the plate is washed 3 times to remove any unbound sample or drug-enzyme conjugate. The presence of bound drug-enzyme conjugate is recognized by the addition of K-Blue® Substrate (TMB). After a 30 minute substrate incubation, the reaction is halted with the addition of Red Stop Solution. -
WO 2014/085719 Al 5 June 2014 (05.06.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/085719 Al 5 June 2014 (05.06.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61M 15/00 (2006.01) A24F 47/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 13/072426 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 27 November 2013 (27.1 1.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/730,738 28 November 2012 (28. 11.2012) US 61/794,601 15 March 2013 (15.03.2013) US (84) Designated States (unless otherwise indicated, for every 61/83 1,992 6 June 2013 (06.06.2013) us kind of regional protection available): ARIPO (BW, GH, 61/887,045 4 October 201 3 (04. -
Cayman Pain Research
Pain Research The development of novel pain therapeutics relies on understanding the highly complex nociceptive signaling pathways. Cayman offers a select group of tools to study TRP ion channels, purinergic receptors, voltage-gated ion channels, and various G protein-coupled receptors (GPCRs) that are known to be expressed by nociceptive primary afferent nerves. Modulators of glutamate, GABA, and nicotinic acetylcholine receptors are also available. Pain Signal Pain Transmission Primary nociceptor afferents release neurotransmitters such as glutamate and prostaglandins, which bind to specific Glutamate, prostaglandins, etc. receptors on the postsynaptic membrane to transmit a pain signal. 2+ glutamate Ca prostaglandins cannabinoids opioids The antinociceptive response includes Mg2+ EP1 AMPA NMDA inhibitory interneurons, signaling via GABA CB OP receptors, that activate μ-opioid receptors, + Na Ca2+ among others. + 2+ 5-HT K Ca Action potentials Na+ GABA Inhibitory Inhibitory pathways descending from interneuron the brainstem release neurotransmitters Descending neuron from such as serotonin (5-HT) or activate small brainstem opioid-containing interneurons in the spinal dorsal horn to release opioid peptides. Pain Signal Image adapted from: Olesen, A.E., Andresen, T., Staahl, C., et al. Pharmacol. Rev. 64(3), 722-779 (2012). Ligand-Gated Ion Channels TRP Ion Channel Agonists and Antagonists Item No. Product Name Summary A competitive antagonist of capsaicin activation of TRPV1 (IC s = 24.5 and 85.6 nM for human 14715 AMG 9810 50 and rat, -
ARCI Uniform Classification Guidelines for Foreign Substances, Or Similar State Regulatory Guidelines, Shall Be Assigned Points As Follows
DRUG TESTING STANDARDS AND PRACTICES PROGRAM. Uniform Classification Guidelines for Foreign Substances And Recommended Penalties Model Rule. January, 2019 (V.14.0) © ASSOCIATION OF RACING COMMISSIONERS INTERNATIONAL – 2019. Association of Racing Commissioners International 2365 Harrodsburg Road- B450 Lexington, Kentucky, USA www.arci.com Page 1 of 66 Preamble to the Uniform Classification Guidelines of Foreign Substances The Preamble to the Uniform Classification Guidelines was approved by the RCI Drug Testing and Quality Assurance Program Committee (now the Drug Testing Standards and Practices Program Committee) on August 26, 1991. Minor revisions to the Preamble were made by the Drug Classification subcommittee (now the Veterinary Pharmacologists Subcommittee) on September 3, 1991. "The Uniform Classification Guidelines printed on the following pages are intended to assist stewards, hearing officers and racing commissioners in evaluating the seriousness of alleged violations of medication and prohibited substance rules in racing jurisdictions. Practicing equine veterinarians, state veterinarians, and equine pharmacologists are available and should be consulted to explain the pharmacological effects of the drugs listed in each class prior to any decisions with respect to penalities to be imposed. The ranking of drugs is based on their pharmacology, their ability to influence the outcome of a race, whether or not they have legitimate therapeutic uses in the racing horse, or other evidence that they may be used improperly. These classes of drugs are intended only as guidelines and should be employed only to assist persons adjudicating facts and opinions in understanding the seriousness of the alleged offenses. The facts of each case are always different and there may be mitigating circumstances which should always be considered.