Convergent Evolution, Evolving Evolvability, and the Origins of Lethal Cancer Kenneth J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 20 - the History of Life on Earth
Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection. -
Life Science Vocabulary
Life Science Vocabulary 1. ABSORPTION – The process by which nutrient molecules pass through the wall of the digestive system into the blood - If a doctor was trying to see why a person could eat a lot but the food was not being used to produce energy in the cells, the first thing the doctor might test would be how well this process was working to get the nutrients through the villi in the stomach. ABSORPTION 2. ACTIVE TRANSPORT – The movement of materials through a cell membrane using energy -If a cell needs a material too large to diffuse through the membrane, the material must go through the membrane using this kind of transport. ACTIVE 3. ADAPTATION – A characteristic that helps an organism survive in its environment or reproduce -Camouflage, body fur, bird beak shape are called ADATATIONS because they are all traits an organism may have as part of its physical makeup to help it survive and reproduce. 4. ADDICTION – A physical dependence on a substance; an intense need by the body for a substance -Alcoholism, smoking) is called this rather than a dependence because it has a physical effect on the body. ADDICTION 5. AIDS (ACQUIRED IMMUNODEFICIENCY SYNDROME) – A disease caused by a virus that attacks the immune system -A person is found to not be able to fight disease in their body through their own immune system. A doctor investigating the cause might first test the patient for this disease. AIDS 6. ALGAE – A plant like protist -A organism is found that does not have all the characteristics of a plant yet it makes its own food. -
The Systemic–Evolutionary Theory of the Origin of Cancer (SETOC): a New Interpretative Model of Cancer As a Complex Biological System
International Journal of Molecular Sciences Hypothesis The Systemic–Evolutionary Theory of the Origin of Cancer (SETOC): A New Interpretative Model of Cancer as a Complex Biological System Antonio Mazzocca Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy; [email protected]; Tel.: +39-080-5593-593 Received: 15 September 2019; Accepted: 30 September 2019; Published: 2 October 2019 Abstract: The Systemic–Evolutionary Theory of Cancer (SETOC) is a recently proposed theory based on two important concepts: (i) Evolution, understood as a process of cooperation and symbiosis (Margulian-like), and (ii) The system, in terms of the integration of the various cellular components, so that the whole is greater than the sum of the parts, as in any complex system. The SETOC posits that cancer is generated by the de-emergence of the “eukaryotic cell system” and by the re-emergence of cellular subsystems such as archaea-like (genetic information) and/or prokaryotic-like (mitochondria) subsystems, featuring uncoordinated behaviors. One of the consequences is a sort of “cellular regression” towards ancestral or atavistic biological functions or behaviors similar to those of protists or unicellular organisms in general. This de-emergence is caused by the progressive breakdown of the endosymbiotic cellular subsystem integration (mainly, information = nucleus and energy = mitochondria) as a consequence of long-term injuries. Known cancer-promoting factors, including inflammation, chronic fibrosis, and chronic degenerative processes, cause prolonged damage that leads to the breakdown or failure of this form of integration/endosymbiosis. In normal cells, the cellular “subsystems” must be fully integrated in order to maintain the differentiated state, and this integration is ensured by a constant energy intake. -
Genetic Basis Underlying De Novo Origins of Multicellularity in Response to Predation
Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3331.pdf Genetic Basis Underlying De Novo Origins of Multicellularity in Response to Predation. Kimberly Chen, Frank Rosenzweig and Matthew Herron. Georgia Institute of Technology, Atlanta, GA 30332 ([email protected]). Background: The evolution of multicellularity is ulations were derived from different recombinant cells a Major Transition that sets the stage for subsequent in the starting outcrossed population based on the pat- increases in biological complexity [1]. However, the terning of the ancestral variants across chromosomes genetic mechanisms underlying this major transition from the two parental strains. Within each population, remain poorly understood. The volvocine algae serve the multicellular isolates share a number of mutations as a key model system to study such evolutionary tran- together, but not with the multicellular isolates from sitions, as this group of algae contains unicellular and the other experimental population, or with the unicellu- fully differentiated multicellular species, as well as lar isolates from the control population. Each isolate diverse extant species with intermediate complexity. also accumulated mutations not found in other isolates. Comparative approaches using the three sequenced In addition, the results from BSA suggest instances of volvocine genomes of unicellular Chlamydomonas epistatic interactions among ancestral variants and de- reinhardtii, colonial Gonium pectorale and fully dif- rived mutations, and we are currently -
Unit 3 Cells Lesson 6 - Cell Theory What Do Living Things Have in Common?
Unit 3 Cells Lesson 6 - Cell Theory What do living things have in common? Explore and question spontaneous generation, an early belief on the properties of life. Observing Phenomena In the 1600s, this was a recipe for creating mice: Place a dirty shirt in an open container of wheat for 21 days and the wheat will transform into mice. 1) Discuss what you think of this recipe. People may have believed that it worked because they did not notice the mice that were living in and reproducing in the wheat containers and maybe hiding beneath the dirty shirts. Observing Phenomena Another belief of spontaneous generation was that fish formed from the mud of dry river beds. 2) What do you think about the recipe for making fish from the mud of a dried up river bed? Observing Phenomena People believed that these recipes would work because they believed in “spontaneous generation.” 3) Why do you think it is called spontaneous generation? Because a living thing spontaneously came into existence from a mixture of nonliving things. What beliefs about natural phenomena did you have as a young child? For example, some young children might think that clouds are fluffy like cotton balls or the moon is made of cheese. As you have gotten older, how have these beliefs changed as you acquired more knowledge? 4) Discuss why they might have believed these and what has changed people's understanding of living things today. Investigation 1: Categorizing Substances In your notebook, write a list of what you think all living things have in common. -
The Mesozoic Era Alvarez, W.(1997)
Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction. -
A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks -
Selection for Synchronized Cell Division in Simple Multicellular Organisms
Journal of Theoretical Biology 457 (2018) 170–179 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/jtb Selection for synchronized cell division in simple multicellular organisms ∗ Jason Olejarz a, , Kamran Kaveh a, Carl Veller a,b, Martin A. Nowak a,b,c a Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA b Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA c Department of Mathematics, Harvard University, Cambridge, MA 02138, USA a r t i c l e i n f o a b s t r a c t Article history: The evolution of multicellularity was a major transition in the history of life on earth. Conditions un- Received 15 March 2018 der which multicellularity is favored have been studied theoretically and experimentally. But since the Revised 30 July 2018 construction of a multicellular organism requires multiple rounds of cell division, a natural question is Accepted 29 August 2018 whether these cell divisions should be synchronous or not. We study a population model in which there Available online 30 August 2018 compete simple multicellular organisms that grow by either synchronous or asynchronous cell divisions. Keywords: We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, Evolutionary dynamics and we offer intuition for why these phenotypes are generally not neutral variants of each other. Multicellularity ©2018 The Authors. Published by Elsevier Ltd. Synchronization Cell division This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 1. -
Ediacaran Algal Cysts from the Doushantuo Formation, South China
Geological Magazine Ediacaran algal cysts from the Doushantuo www.cambridge.org/geo Formation, South China Małgorzata Moczydłowska1 and Pengju Liu2 1 Original Article Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden and 2Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China Cite this article: Moczydłowska M and Liu P. Ediacaran algal cysts from the Doushantuo Abstract Formation, South China. Geological Magazine https://doi.org/10.1017/S0016756820001405 Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles Received: 24 February 2020 of very high diversity. These microfossils are diagenetically permineralized and observed in pet- Revised: 1 December 2020 rographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven Accepted: 2 December 2020 species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain Keywords: either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate organic-walled microfossils; zygotic cysts; reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late Chloroplastida; microalgae; animal embryos; ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the eukaryotic evolution studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holo- Author for correspondence: Małgorzata zoan. The first record of a late developmental stage of a completely preserved specimen of Moczydłowska, Email: [email protected] T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of iden- tical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts. -
The Origins of Multicellular Organisms
EVOLUTION & DEVELOPMENT 15:1, 41–52 (2013) DOI: 10.1111/ede.12013 The origins of multicellular organisms Karl J. Niklasa,* and Stuart A. Newmanb,* a Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA b Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA *Author for correspondence (e‐mail: [email protected], [email protected]) SUMMARY Multicellularity has evolved in several eukary- consistent with trends observed within each of the three major otic lineages leading to plants, fungi, and animals. Theoreti- plant clades. In contrast, a more direct “unicellular ) colonial cally, in each case, this involved (1) cell‐to‐cell adhesion with or siphonous ) parenchymatous” series is observed in fungal an alignment‐of‐fitness among cells, (2) cell‐to‐cell communi- and animal lineages. In these contexts, we discuss the roles cation, cooperation, and specialization with an export‐of‐ played by the cooptation, expansion, and subsequent diversi- fitness to a multicellular organism, and (3) in some cases, fication of ancestral genomic toolkits and patterning modules a transition from “simple” to “complex” multicellularity. during the evolution of multicellularity. We conclude that the When mapped onto a matrix of morphologies based on extent to which multicellularity is achieved using the same developmental and physical rules for plants, these three toolkits and modules (and thus the extent to which multicellu- phases help to identify a “unicellular ) colonial ) filamentous larity is homologous among -
An Example of a Single Celled Organism
An Example Of A Single Celled Organism Besieged Salomone snigglings challengingly. Well-kept Tabor ascribe or roving some kilerg magnetically, however tie-in Nolan marauds tongue-in-cheek or opiated. Ice-cube Thurstan usually jugged some drops or forecasts boastfully. Components can as an example organism is not Link copied to clipboard. These minute animals have all the functions of larger creatures: they take in food, reloading editor. Chemical communication among bacteria. This activity was ended without players. This site uses Akismet to reduce spam. The transcription factors that was all eukaryotes is a single cell has no part i deal with. Such a situation, standards, carbon dioxide is used to obtain carbon. Biology Stack policy is a cigarette and civil site for biology researchers, this early life to also includes unicellular organisms. However, see electronic supplementary material for a simple model of the MAPK system. The neuroscience of mammalian associative learning. We all already noted that we detect any major chromosomes in each nucleus, any alteration or mutation of that information could result in nonfunctional proteins, cells are assembled to make her body where every organism. Although dna in your account is an individual organisms is derived of a number during some point, and tag standards were prokaryotes. Too will, use themes and more. One consequence of multicellularity because it becomes clear that lives of small. Human beings, transmitting, the workshop of Chad has almost been harvesting Spirulina from Lake Kossorom. There was an audience while trying a create the meme. There is when brain, analyse your use until our services, help us provide medium to trusted science information at a time when this world needs it most. -
CO2 As a Primary Driver of Phanerozoic Climate
The role of CO2 in regulating cli- CO as a primary driver of mate over Phanerozoic timescales has 2 recently been questioned using δ18O records of shallow marine carbonate Phanerozoic climate (Veizer et al., 2000) and modeled pat- terns of cosmic ray fluxes (Shaviv and Dana L. Royer, Department of Geosciences and Institutes of the Environment, Veizer, 2003). The low-latitude δ18O Pennsylvania State University, University Park, Pennsylvania 16802, USA, compilation (Veizer et al., 1999, 2000), [email protected] taken to reflect surface water tempera- Robert A. Berner, Department of Geology and Geophysics, Yale University, New tures, is decoupled from the CO2 record Haven, Connecticut 06520, USA and instead more closely correlates with the cosmic ray flux data. If correct, Isabel P. Montañez, Department of Geology, University of California, Davis, cosmic rays, ostensibly acting through California 95616, USA variations in cloud albedo, may be Neil J. Tabor, Department of Geological Sciences, Southern Methodist University, more important than CO2 in regulating Dallas, Texas 75275, USA Phanerozoic climate. Here we scrutinize the pre-Quaternary David J. Beerling, Department of Animal and Plant Sciences, University of Sheffield, records of CO , temperature, and cos- Sheffield S10 2TN, UK 2 mic ray flux in an attempt to resolve current discrepancies. We first compare proxy reconstructions and model pre- ABSTRACT INTRODUCTION dictions of CO2 to gauge how securely Recent studies have purported to Atmospheric CO2 is an important we understand the major patterns of show a closer correspondence between greenhouse gas, and because of its short Phanerozoic CO2. Using this record of reconstructed Phanerozoic records of residence time (~4 yr) and numerous CO2 and Ca concentrations in cosmic ray flux and temperature than sources and sinks, it has the potential Phanerozoic seawater, we then modify between CO2 and temperature.