Age-Related Dendritic Changes in Human Occipital and Prefrontal Cortices: a Quantitative Golgi Study

Total Page:16

File Type:pdf, Size:1020Kb

Age-Related Dendritic Changes in Human Occipital and Prefrontal Cortices: a Quantitative Golgi Study Modern Psychological Studies Volume 4 Number 1 Article 3 1996 Age-related dendritic changes in human occipital and prefrontal cortices: a quantitative Golgi study Kelly A. Courns Colorado College Bob Jacobs Colorado College Follow this and additional works at: https://scholar.utc.edu/mps Part of the Psychology Commons Recommended Citation Courns, Kelly A. and Jacobs, Bob (1996) "Age-related dendritic changes in human occipital and prefrontal cortices: a quantitative Golgi study," Modern Psychological Studies: Vol. 4 : No. 1 , Article 3. Available at: https://scholar.utc.edu/mps/vol4/iss1/3 This articles is brought to you for free and open access by the Journals, Magazines, and Newsletters at UTC Scholar. It has been accepted for inclusion in Modern Psychological Studies by an authorized editor of UTC Scholar. For more information, please contact [email protected]. Modem Psychological Studies Copyright 1996 by 1996, Vol. 4, No. 1, pp. 10-20 Modem Psychological Studies Age-related Dendritic Changes in Human Occipital and Prefrontal Cortices: A Quantitative Golgi Study Kelly A. Courns and Bob Jacobs Laboratory of Quantitative Neuromorphology Department of Psychology Colorado College Qualitative (Scheibe!, 1992) and quantitative (Jacobs & Scheibel, 1993) research indicates a general decline in dendritic neuropil with increasing age. The present study extends previous human dendritic research by examining quantitatively age-related changes in 2 cortical areas: prefrontal cortex (area 10) and occipital cortex (area 18). Tissue blocks were obtained from the left hemisphere of 10 neurologically normal subjects, ranging in age from 23 to 81 years. Blocks were stained with a modified rapid Golgi technique. Supragranular pyramidal cells were quantified on a Neurolucida computer/microscope interface system (Microbrightfield, Inc.). Dendritic system complexity was determined by several dependent measures: total dendritic length, mean dendritic length , dendritic segment count (DSC), dendritic spine number, and dendritic spine density. All dependent measures, except DSC, decreased with age, with a substantial (approximately 50%) decrease in dendritic spines. Although area 10 exhibited greater dendritic aborizations than area 18, dendritic declines were slightly more pronounced in area 10 than in area 18. The present results quantitatively document the ongoing, dynamic refinement of dendritic systems across the human life span, and suggest that higher order cortical areas (e.g., area 10) may be more susceptible to age-related changes. Those cognitive changes in processing speed and Other age-associated histological changes have style that develop, benignly during the process of been observed across several cortical areas. Declines in normal aging, and more catastrophically in dementias such as Alzheimer's disease, can be related in large brain weight, cortical thickness, and in the number of measure to the loss of dendritic surface, with resultant large neurons have been observed in midfrontal, disappearance of synaptic connections and superior temporal, and inferior parietal areas of aged progressive restriction in the computational power of human brains (Terry , DeTeresa, & Hansen, 1987). the brain. (Scheibel, 1992, p. 159) More specifically, a 13-20% reduction in soma area, which appears to be related to a reduction in dendritic Several age-related neural changes have been systems, has been revealed in individuals between the documented in both nonhuman and human animals ages of 70 and 85 years in the superior temporal gyms (Flood & Coleman, 1988). In particular, qualitative (Anderson, Hubbard, Coghill, & Slidders, 1983). (Scheibel, 1992) and quantitative (Jacobs & Scheibel, Similar decreases in neuron density have been observed 1993) analyses reveal age-related decreases in dendritic in human somatosensory and visual cortices (Flood & complexity. Scheibel noted that aged human brains exhibited irregular swelling of the soma, loss of dendritic spines, and decreases in both basilar and apical I would like to thank the Associated Colleges of the dendritic systems. Age-related declines in basilar Midwest for developing the Minority Scholar Program, which gave me the invaluable opportunity to do the dendritic length have also been quantitatively observed present research. I am grateful to Dr. Bowerman, the El in Wernicke's area (Jacobs & Scheibel). More recently, Paso County Coroner, and Dr. Sherwin from Penrose Baca et al. (1995) documented age-related decreases in Hospital for providing brain tissue. I would also like to basilar dendritic length and dendritic spine number in thank Lori Larsen, Serapio Baca, and Jonathan Driscoll for preparing me for the present study. Lastly, several human cortical areas and suggested that age- I thank my family for their continued support. Partial related changes may not be uniform across all cortical support for this work was provided by the National regions. Science Foundation Division of Undergraduate Education through grant DUE - #9550790. 10 MODERN PSYCHOLOGICAL STUDIES AGE-RELATED DENDRITIC CHANGES IN HUMAN CORTEX Coleman, 1988). changes in two cortical areas: prefrontal cortex (area 10) Several indirect measures further suggest decreases and occipital cortex (area 18). These two regions were in dendritic systems with age. Chugani, Phelps, and chosen because preliminary results (Baca et al., 1995) Mazziotta (1987) found lower local cerebral metabolic indicate that cortical areas higher in the information rates for glucose (CMRG1c) in adults than in children. processing hierarchy—as determined by Benson's These changes were specifically associated with age- (1994) functional schema—may be preferentially related alterations in dendritic systems (Jacobs et al., susceptible to age-related changes. Age-related decreases 1995; Jacobs & Scheibel, 1993). Age-related decreases in dendritic complexity and especially in dendritic spine in mean CMRGIc (Yoshii et al., 1988) and decreases in number/density are expected in both cortical areas. cerebral blood flow (Kety, 1956; Leenders et al., 1990; However, it is predicted that unimodal association Melamed, Lavy, Bentin, Cooper, & Rinot, 1980) have cortex (area 18), which is involved in basic visual been documented along with decreases in blood volume. processing, will be less affected by aging than Such metabolic changes parallel declines in synaptic supramodal association cortex (area 10), which is density with increasing age (Leenders et al.). More involved in executive (cognitive) control of mental directly, age-related decreases in the synaptophysin functions. The magnitude of age-related decreases is content have been observed in older rat brains (Saito et expected to be greater in supramodal cortex because, al., 1994), a decrease that correlates closely with loss of with increasing age, higher order cortical areas may not synapses (Masliah, Terry, Alford, DeTeresa, & Hansen, be as fully utilized as cortices involved in more basic 1991). Bondareff and Geinisman (1976) and Feldman (e.g., visual) processing. (1976) found a decrease in deafferented dendritic spines, indicating a correlation between loss of synapses and Method decreases in dendritic spine number. Apart from Huttenlocher's (1979) intensive Subjects developmental work, the present study is the first to examine quantitatively age-related changes in dendritic Tissue was removed from the left hemisphere of 10 spines across the human life span. The current project neurologically normal subjects, ranging in age from 23 extends previous human dendritic research (Jacobs & to 81 years (M = 50±19.5; see Table 1). The average Scheibel, 1993; Larsen, Swanson, Wainwright, & autolysis time was 10.4±4.6 hours. Brains were divided Jacobs, 1994) by specifically examining age-related into a younger group (n = 5; 23-48 years of age; M = 33.8±9.0) and an older group (n = 5; 51-81 years of Table 1 age; M = 66.2±10.8). Brains were obtained from the County Coroner's office and a local hospital. The Subject summary research protocol was approved by The Colorado College Human Subjects Institutional Review Board Age Gender Race Autolysis Cause of death (#H94-004). (years) time (hours) Apparatus 23 M C 12.0 Motor vehicle accident (chest trauma) All cells were quantified on a Neurolucida computer/microscope interface system 32 F C 20.0 Bulimia (Microbrightfield, Inc.) with an Olympus BH-2 32 M C 9 .0 Suicide (asphyxia) microscope under a 40X (.70) dry objective. 34 F C 14.5 Heroine overdose Histological Techniques 48 F C 4.0 Myxoid leiomyosarcoma 51 F C 6.0 Respiratory distress/ Tissue was immersion fixed in 10% neutral emphysema buffered formalin for 2-4 weeks before staining. One 3- 64 F C 11.0 Myocardial infarction 5 mm tissue block was removed from the frontal pole 66 M C 9.0 Pneumonia/cardiac (area 10) and the lateral surface of the occipital lobe arrest (area 18). Coded tissue blocks were stained using a 69 M C 7.0 Prostate cancer modified rapid Golgi technique (Scheibel & Scheibel, 1978). Adjacent cortical blocks were stained with a 81 M C 11.0 Gastro-intestinal bleeding cresyl echt violet technique (Gridley, 1960) to determine laminar depth and cortical thickness. Golgi- MODERN PSYCHOLOGICAL STUDIES 11 Kelly A. Courns and Bob Jacobs stained tissue was serially sectioned at 120 tm on a systems, Pearson product correlations across TDL, vibratome such that sections were perpendicular to the soma size, and DSN averaged 0.98, indicating high long axis of the gyrus. Tissue sections were then agreement between raters.
Recommended publications
  • Some Aspects of Neuromorphology, and the Co-Localization of Glial Related Markers in the Brains of Striped Owl (Asio Clamator) from North East Nigeria
    Niger. J. Physiol. Sci. 35 (June 2020): 109 - 113 www.njps.physiologicalsociety.com Research Article Some Aspects of Neuromorphology, and the Co-localization of Glial Related Markers in the Brains of Striped Owl (Asio clamator) from North East Nigeria Karatu A.La., Olopade, F.Eb., Folarin, O.Rc., Ladagu. A.Dd., *Olopade, J.Od and Kwari, H.Da aDepartment of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria bDepartment of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria cDepartment of Biomedical Laboratory Medical Science, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria dDepartment of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria Summary: The striped owl (Asio clamator) is unique with its brownish white facial disc and they are found in the north eastern part of Nigeria. Little is known in the literature on the basic neuroanatomy of this species. This study focuses on the histology and glial expression of some brain regions of the striped owl. Five owls were obtained in the wild, and their brains were routinely prepared for Haematoxylin and Eosin, and Cresyl violet staining. Immunostaining was done with anti- Calbindin, anti MBP, anti-GFAP, and anti-Iba-1 antibodies; for the expression of cerebellar Purkinje cells and white matter, cerebral astrocytes and microglia cells respectively. These were qualitatively described. We found that the hippocampal formation of the striped owl, though unique, is very similar to what is seen in mammals. The cerebellar cortex is convoluted, has a single layer of Purkinje cells with profuse dendritic arborization, a distinct external granular cell layer, and a prominent stem of white matter were seen in this study.
    [Show full text]
  • Introduction to CNS: Anatomical Techniques
    9.14 - Brain Structure and its Origins Spring 2005 Massachusetts Institute of Technology Instructor: Professor Gerald Schneider A sketch of the central nervous system and its origins G. Schneider 2005 Part 1: Introduction MIT 9.14 Class 2 Neuroanatomical techniques Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons • Irritability and conduction • Specializations of membrane for irritability • Movement • Secretion • Parallel channels of information flow; integrative activity • Endogenous activity The need for integrative action in multi cellular organisms • Problems that increase with greater size and complexity of the organism: – How does one end influence the other end? – How does one side coordinate with the other side? – With multiple inputs and multiple outputs, how can conflicts be avoided (often, if not always!)? • Hence, the evolution of interconnections among multiple subsystems of the nervous system. How can such connections be studied? • The methods of neuroanatomy (neuromorphology): Obtaining data for making sense of this “lump of porridge”. • We can make much more sense of it when we use multiple methods to study the same brain. E.g., in addition we can use: – Neurophysiology: electrical stimulation and recording – Neurochemistry; neuropharmacology – Behavioral studies in conjunction with brain studies • In recent years, various imaging methods have also been used, with the advantage of being able to study the brains of humans, cetaceans and other animals without cutting them up. However, these methods are very limited for the study of pathways and connections in the CNS. A look at neuroanatomical methods Sectioning Figure by MIT OCW. Cytoarchitecture: Using dyes to bind selectively in the tissue -- Example of stains for cell bodies Specimen slide removed due to copyright reasons.
    [Show full text]
  • The Neocortex of Cetartiodactyls. II. Neuronal Morphology of the Visual and Motor Cortices in the Giraffe (Giraffa Camelopardalis)
    Brain Struct Funct (2015) 220:2851–2872 DOI 10.1007/s00429-014-0830-9 ORIGINAL ARTICLE The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis) Bob Jacobs • Tessa Harland • Deborah Kennedy • Matthew Schall • Bridget Wicinski • Camilla Butti • Patrick R. Hof • Chet C. Sherwood • Paul R. Manger Received: 11 May 2014 / Accepted: 21 June 2014 / Published online: 22 July 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract The present quantitative study extends our of aspiny neurons in giraffes appeared to be similar to investigation of cetartiodactyls by exploring the neuronal that of other eutherian mammals. For cross-species morphology in the giraffe (Giraffa camelopardalis) neo- comparison of neuron morphology, giraffe pyramidal cortex. Here, we investigate giraffe primary visual and neurons were compared to those quantified with the same motor cortices from perfusion-fixed brains of three su- methodology in African elephants and some cetaceans badults stained with a modified rapid Golgi technique. (e.g., bottlenose dolphin, minke whale, humpback whale). Neurons (n = 244) were quantified on a computer-assis- Across species, the giraffe (and cetaceans) exhibited less ted microscopy system. Qualitatively, the giraffe neo- widely bifurcating apical dendrites compared to ele- cortex contained an array of complex spiny neurons that phants. Quantitative dendritic measures revealed that the included both ‘‘typical’’ pyramidal neuron morphology elephant and humpback whale had more extensive den- and ‘‘atypical’’ spiny neurons in terms of morphology drites than giraffes, whereas the minke whale and bot- and/or orientation. In general, the neocortex exhibited a tlenose dolphin had less extensive dendritic arbors.
    [Show full text]
  • Impaired Axonal Regeneration in Α7 Integrin-Deficient Mice
    The Journal of Neuroscience, March 1, 2000, 20(5):1822–1830 Impaired Axonal Regeneration in ␣7 Integrin-Deficient Mice Alexander Werner,1 Michael Willem,2 Leonard L. Jones,1 Georg W. Kreutzberg,1 Ulrike Mayer,2 and Gennadij Raivich1 1Department of Neuromorphology, Max-Planck-Institute of Neurobiology, and 2Department of Protein Chemistry, Max- Planck-Institute of Biochemistry, 82152 Martinsried, Germany The interplay between growing axons and the extracellular the regenerating facial nerve. Transgenic deletion of the ␣7 substrate is pivotal for directing axonal outgrowth during de- subunit caused a significant reduction of axonal elongation. velopment and regeneration. Here we show an important role The associated delay in the reinnervation of the whiskerpad, a for the neuronal cell adhesion molecule ␣7␤1 integrin during peripheral target of the facial motor neurons, points to an peripheral nerve regeneration. Axotomy led to a strong increase important role for this integrin in the successful execution of of this integrin on regenerating motor and sensory neurons, but axonal regeneration. not on the normally nonregenerating CNS neurons. ␣7 and ␤1 Key words: axonal regeneration; reinnervation; facial nerve; subunits were present on the axons and their growth cones in growth cone; motoneuron; integrin; knock-out mice Changes in adhesion properties of transected axons and their Flier et al., 1995; Kil and Bronner-Fraser, 1996; Velling et al., environment are essential for regeneration. In the proximal part, 1996). In the adult nervous system, we now show that ␣7is the tips of the transected axons transform into growth cones that strongly upregulated in axotomized neurons in various injury home onto the distal part of the nerve and enter the endoneurial models during peripheral nerve regeneration, but not after CNS tubes on their way toward the denervated tissue (Fawcett, 1992; injury.
    [Show full text]
  • Comparative Morphology of Gigantopyramidal Neurons in Primary Motor Cortex Across Mammals
    Received: 23 August 2017 | Revised: 19 October 2017 | Accepted: 24 October 2017 DOI: 10.1002/cne.24349 The Journal of RESEARCH ARTICLE Comparative Neurology Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals Bob Jacobs1 | Madeleine E. Garcia1 | Noah B. Shea-Shumsky1 | Mackenzie E. Tennison1 | Matthew Schall1 | Mark S. Saviano1 | Tia A. Tummino1 | Anthony J. Bull2 | Lori L. Driscoll1 | Mary Ann Raghanti3 | Albert H. Lewandowski4 | Bridget Wicinski5 | Hong Ki Chui1 | Mads F. Bertelsen6 | Timothy Walsh7 | Adhil Bhagwandin8 | Muhammad A. Spocter8,9,10 | Patrick R. Hof5 | Chet C. Sherwood11 | Paul R. Manger8 1Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado 2Human Biology and Kinesiology, Colorado College, Colorado Springs, Colorado 3Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio 4Cleveland Metroparks Zoo, Cleveland, Ohio 5Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 6Center for Zoo and Wild Animal Health, Copenhagen Zoo, Fredericksberg, Denmark 7Smithsonian National Zoological Park, Washington, District of Columbia 8School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa 9Department of Anatomy, Des Moines University, Des Moines, Iowa 10Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 11Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia Correspondence Bob Jacobs, Ph.D., Laboratory of Abstract Quantitative Neuromorphology, Gigantopyramidal neurons, referred to as Betz cells in primates, are characterized by large somata Neuroscience Program, Colorado College, and extensive basilar dendrites. Although there have been morphological descriptions and draw- 14 E.
    [Show full text]
  • Neural Plasticity in the Gastrointestinal Tract: Chronic Inflammation, Neurotrophic Signals, and Hypersensitivity
    Acta Neuropathol DOI 10.1007/s00401-013-1099-4 REVIEW Neural plasticity in the gastrointestinal tract: chronic inflammation, neurotrophic signals, and hypersensitivity Ihsan Ekin Demir • Karl-Herbert Scha¨fer • Elke Tieftrunk • Helmut Friess • Gu¨ralp O. Ceyhan Received: 11 September 2012 / Revised: 31 January 2013 / Accepted: 7 February 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Neural plasticity is not only the adaptive inflammatory, infectious, neoplastic/malignant, or degen- response of the central nervous system to learning, struc- erative—neural plasticity in the GI tract primarily occurs in tural damage or sensory deprivation, but also an the presence of chronic tissue- and neuro-inflammation. It increasingly recognized common feature of the gastroin- seems that studying the abundant trophic and activating testinal (GI) nervous system during pathological states. signals which are generated during this neuro-immune- Indeed, nearly all chronic GI disorders exhibit a disease- crosstalk represents the key to understand the remarkable stage-dependent, structural and functional neuroplasticity. neuroplasticity of the GI tract. At structural level, GI neuroplasticity usually comprises local tissue hyperinnervation (neural sprouting, neural, and Keywords Neural plasticity Á Gastrointestinal tract Á ganglionic hypertrophy) next to hypoinnervated areas, a Enteric nervous system Á Neuro-inflammation Á switch in the neurochemical (neurotransmitter/neuropep- Hypersensitivity Á Pain tide) code toward preferential expression of neuropeptides
    [Show full text]
  • Dendritic Modelling
    Dendritic Modelling Dendrites (from Greek dendron, “tree”) are the branched projections of a neuron that act to conduct the electrical stimulation received from other cells to and from the cell body, or soma, of the neuron from which the dendrites project. Electrical stimulation is transmitted onto dendrites by upstream neurons via synapses which are located at various points throughout the dendritic arbor. Dendrites play a critical role in integrating these synaptic inputs and in determining the extent to which action potentials are produced by the neuron. 80% of all excitatory synapses - at the dendritic spines. 80% of all excitatory synapses - at the dendritic spines. learning and memory, logical computations, pattern matching, amplification of distal synaptic inputs, temporal filtering. 80% of all excitatory synapses - at the dendritic spines. learning and memory, logical computations, pattern matching, amplification of distal synaptic inputs, temporal filtering. 80% of all excitatory synapses - at the dendritic spines. learning and memory, logical computations, pattern matching, amplification of distal synaptic inputs, temporal filtering. Electrical properties of dendrites The structure and branching of a neuron's dendrites, as well as the availability and variation in voltage-gated ion conductances, strongly influences how it integrates the input from other neurons, particularly those that input only weakly. This integration is both “temporal” -- involving the summation of stimuli that arrive in rapid succession -- as well as “spatial” -- entailing the aggregation of excitatory and inhibitory inputs from separate branches. Dendrites were once believed to merely convey stimulation passively, i.e. via diffusive spread of voltage and without the aid of voltage-gated ion channels.
    [Show full text]
  • The Dendritic Lamellar Body: a New Neuronal Organelle Putatively Associated with Dendrodendritic Gap Junctions
    The Jcumal of Neuosdence. February 1995, f5(2): 1587-1604 The Dendritic Lamellar Body: A New Neuronal Organelle Putatively Associated with Dendrodendritic Gap Junctions C. I. De Zeeuw,1,2J E. L. Hertzberg, and E. Mugnainil ILaboratory of Neuromorphology, Biobehavioural Sciences, University of Connecticut, Storrs, Connecticut 06269- 4164, 2Department of Anatomy, Erasmus University Rotterdam, 3000 DR, Rotterdam, The Netherlands, and 3Department of Neuroscience, Albert Einstein College of Medicine (D.C.S.), New York, New York 10461 It is shown in rat that antiserum a12B/18 specifically labels Sasaki, 1989; Sasaki et al., 1989). To date, there has been no a new lamellar organelle that is exclusively located in den- description of any neuronal structure, other than the gap junc- dritic appendages. These dendritic lamellar bodies occur tion, that appearsto be associatedwith electrotonically coupled in a restricted number of brain regions, which include ar- neurons. eas like the inferior olive, area CA1 and CA3 of the hippo- More recently, antibodiesand mRNA probes have been used campus, dentate gyrus, olfactory bulb, and cerebral cortex. to detect the distribution of gap junctions, but theselatter mark- In these regions the neurons with lamellar bodies form ers are unable to indicate, directly or indirectly, specifically the dendrodendritic gap junctions. lmmunoreactivity in the in- presenceof neuronal gap junctions (Nagy et al., 1988; Dermi- ferior olive is first detected between P9 and P15, which co- etzel, 1989; Shiosaka et al., 1989; Yamamoto et al., l989a, incides with the development of gap junctions in this nu- 1990a.c; Naus et al., 1990; Matsumoto et al., 1991; Micevych cleus.
    [Show full text]
  • The Neuropeptide Cerebellin Is a Marker for Two Similar Neuronal
    Proc. Natl. Acad. Sci. USA Vol. 84, pp. 8692-8696, December 1987 Neurobiology The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain (cartwheel neurons/cochlear nuclei/immunocytochemistry/radioimmunoassay/Purkinje cells) ENRICO MUGNAINI* AND JAMES 1. MORGANt *Laboratory of Neuromorphology, Box U-154, The University of Connecticut, Storrs, CT 06268; and tDepartment of Neuroscience, Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110 Communicated by Sanford L. Palay, August 7, 1987 (received for review October 9, 1986) ABSTRACT We report here that the neuropeptide To extend the study of these two structures, we have cerebellin, a known marker of cerebellar Purkinje cells, has examined and compared the expression and the localization only one substantial extracerebellar location, the dorsal of the recently discovered neuropeptide cerebellin (17) in the cochlear nucleus (DCoN). By reverse-phase high-performance DCoN and the cerebellum by radioimmunoassay (RIA) liquid chromatography and radioimmunoassay, cerebellum combined with reverse-phase high-performance liquid chro- and DCoN in rat were found to contain similar concentrations matography (HPLC) and immunocytochemistry. Cerebellin ofthis hexadecapeptide. Immunocytochemistry with our rabbit has been demonstrated previously to be a marker of cere- antiserum C1, raised against synthetic cerebellin, revealed that bellar Purkinje cells (17, 18), although its mode ofdistribution cerebellin-like immunoreactivity in the cerebellum is localized throughout the cerebellum was not explored. exclusively to Purkinje cells, while in the DCoN, it is found primarily in cartwheel cells and in the basal dendrites of MATERIALS AND METHODS pyramidal neurons. Some displaced Purkinje cells were also stained. Although cerebellum and DCoN receive their inputs Biochemistry.
    [Show full text]
  • Neuromedia Combinations of Artistic Interpretation with Neuroscience Research for the Public : Tactile Interfaces : the Visual System : Cognition and Behaviour
    Neuromedia combinations of artistic interpretation with neuroscience research for the public : tactile interfaces : the visual system : cognition and behaviour Prof. Dr. Jill Scott Institute Cultural Studies ZHDK University of the Arts, Zurich, Switzerland Neuromedia My Biological Research - PHD since 1993 Digital Body Automata Premise: The idea of the human body has changed to incorporate virtual (digital), organic (material) and mechanical (artificial) concepts Issue: Researching the ethical implications of human bio- manipulation. Need: Understanding neurological development and perceptive impairment Inspirations: Neuroscience Brainport by Paul Bach-y-Rita. Neuroscientist: USA NEUROM- Neurons Moving on a Polymer Substrate, ETH Zurich “Embodied HCI interaction involves ubiquity, tangibility, shared awareness, intimacy and emotion” Paul Dourish Aims of Neuromedia Neuromedia -To produce novel media art interpretations which attempt to raise public awareness about sensory impairment -especially the per ceptions of touch and vision (sensory and motor neurons) -To feed this interest into my long-term experience of designing sensory interfaces, which help people learn about their own perception -To transfer what I have learnt about neuroscience not only to the public, but to include members of the public who are impaired in the formation of ideas and in an appreciation of neuroscience research. The University of Zurich 2003-2005 Artificial Intelligence Lab 2007-8 Neurobiology Lab. Institute of Zoology 2009-2010 Institute for Molecular Biology e-skin@Artifi cial Intelligence Lab Neuromedia Aims: -to incorporate a clearer unde rstanding of neural behaviour underneath the skin itself -to contribute to a more creative sensory technology for the disabled or visually impaired -to explore the cognitive potentials of cross modal interaction Stage 1: AI- Building to Understand Prototype 1: Controlling the mediated stage with 3 interfaces based on 4 skin modalities, 2003 STAGE 1: AI Building to Understand 1.
    [Show full text]
  • Neuromorphology and Neuropharmacology of the Human Penis
    Neuromorphology and Neuropharmacology of the Human Penis AN IN VITRO STUDY GEORGE S. BENSON, JOANN MCCONNELL, LARRY I. LIPSHULTZ, JOSEPH N. CORPIERE, JR., and JOE WOOD, Division of Urology, Department of Surgery and Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, Texas 77030 A B S T R A C T The neuromorphology and neuro- blocked by pretreatment with phentolamine in all CC pharmacology of the human penis are only briefly de- strips tested. Acetylcholine in high concentration scribed in literature. The present study was undertaken produced minimal contraction in 2 of 24 strips. Our to define the adrenergic and cholinergic neuromorphol- morphologic and pharmacologic data suggest that the ogy of the human corpus cavemosum (CC) and corpus sympathetic nervous system may affect erection by spongiosum and to evaluate the in vitro response of the acting not only on the penile vasculature but also by CC to pharmacologic stimulation. Human penile tissue direct action on the smooth muscle of the CC itself. was obtained from six transsexual patients undergoing penectomy. For morphologic study, the tissue was INTRODUCTION processed for (a) hematoxylin and eosin staining; (b) smooth muscle staining; (c) acetylcholinesterase locali- The human penis has been the subject of little morpho- zation; (d) glyoxylic acid histofluorescence; (e) electron logic or physiologic investigation since Conti's descrip- microscopy; and (f) electron microscopy after glutar- tion of "polsters" in 1952 (1). The neuromorphology aldehyde dichromate fixation. In addition, strips of CC of this organ in the adult has been only briefly were placed in in vitro muscle chambers and tension described (2).
    [Show full text]
  • Highlights from the Era of Open Source Web-Based Tools
    The Journal of Neuroscience, 0, 2020 • 00(00):000 • 1 Symposium Highlights from the Era of Open Source Web-Based Tools Kristin R. Anderson,1–5 Julie A. Harris,6 Lydia Ng,6 Pjotr Prins,7 Sara Memar,8 Bengt Ljungquist,9 Daniel Fürth,10 Robert W. Williams,7 Giorgio A. Ascoli,9 and Dani Dumitriu1–5 1Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032, 2Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032, 3The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032, 4Columbia Population Research Center, Columbia University, New York, New York 10027, 5Zuckerman Institute, Columbia University, New York, New York 10027, 6Allen Institute for Brain Science, Seattle, Washington 98109, 7Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, 8Robarts Research Institute, BrainsCAN, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 3K7, Canada, 9Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030, and 10Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 High digital connectivity and a focus on reproducibility are contributing to an open science revolution in neuroscience. Repositories and platforms have emerged across the whole spectrum of subdisciplines, paving the way for a paradigm shift in the way we share, analyze, and reuse vast amounts of data collected across many laboratories. Here, we describe how open access web-based tools are changing the landscape and culture of neuroscience, highlighting six free resources that span sub- disciplines from behavior to whole-brain mapping, circuits, neurons, and gene variants.
    [Show full text]