Atmos. Chem. Phys., 16, 9563–9577, 2016 www.atmos-chem-phys.net/16/9563/2016/ doi:10.5194/acp-16-9563-2016 © Author(s) 2016. CC Attribution 3.0 License. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia Igor Esau1, Victoria V. Miles1, Richard Davy1, Martin W. Miles2, and Anna Kurchatova3 1Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for Climate Research, Bergen, Norway 2Uni Research Climate/Bjerknes Centre for Climate Research, Bergen, Norway, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA 3Institute of the Earth’s Cryosphere, Tyumen Oil and Gas University, Tyumen, Russia Correspondence to: Igor Esau (
[email protected]) Received: 17 January 2016 – Published in Atmos. Chem. Phys. Discuss.: 18 March 2016 Revised: 21 June 2016 – Accepted: 27 June 2016 – Published: 1 August 2016 Abstract. Exploration and exploitation of oil and gas re- with the urban heat islands and succession of more produc- serves of northern West Siberia has promoted rapid indus- tive shrub and tree species growing on warmer sandy soils. trialization and urban development in the region. This devel- opment leaves significant footprints on the sensitive northern environment, which is already stressed by the global warm- ing. This study reports the region-wide changes in the veg- 1 Introduction etation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the Significant shifts in the vegetation land cover and biologi- normalized difference vegetation index (NDVI) from high- cal productivity manifest rapid climate change in the north- resolution (250 m) MODIS data acquired for summer months ern high latitudes (Hinzman et al., 2005; Groisman and Gut- (June through August) over 15 years (2000–2014).