Theory of Quantum Gravity of Photon Confirms Experimental Results of a Varying Fine Structure Constant While Quantum Mechanics Leads to String Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
Quantum Trajectories: Real Or Surreal?
entropy Article Quantum Trajectories: Real or Surreal? Basil J. Hiley * and Peter Van Reeth * Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK * Correspondence: [email protected] (B.J.H.); [email protected] (P.V.R.) Received: 8 April 2018; Accepted: 2 May 2018; Published: 8 May 2018 Abstract: The claim of Kocsis et al. to have experimentally determined “photon trajectories” calls for a re-examination of the meaning of “quantum trajectories”. We will review the arguments that have been assumed to have established that a trajectory has no meaning in the context of quantum mechanics. We show that the conclusion that the Bohm trajectories should be called “surreal” because they are at “variance with the actual observed track” of a particle is wrong as it is based on a false argument. We also present the results of a numerical investigation of a double Stern-Gerlach experiment which shows clearly the role of the spin within the Bohm formalism and discuss situations where the appearance of the quantum potential is open to direct experimental exploration. Keywords: Stern-Gerlach; trajectories; spin 1. Introduction The recent claims to have observed “photon trajectories” [1–3] calls for a re-examination of what we precisely mean by a “particle trajectory” in the quantum domain. Mahler et al. [2] applied the Bohm approach [4] based on the non-relativistic Schrödinger equation to interpret their results, claiming their empirical evidence supported this approach producing “trajectories” remarkably similar to those presented in Philippidis, Dewdney and Hiley [5]. However, the Schrödinger equation cannot be applied to photons because photons have zero rest mass and are relativistic “particles” which must be treated differently. -
The Stueckelberg Wave Equation and the Anomalous Magnetic Moment of the Electron
The Stueckelberg wave equation and the anomalous magnetic moment of the electron A. F. Bennett College of Earth, Ocean and Atmospheric Sciences Oregon State University 104 CEOAS Administration Building Corvallis, OR 97331-5503, USA E-mail: [email protected] Abstract. The parametrized relativistic quantum mechanics of Stueckelberg [Helv. Phys. Acta 15, 23 (1942)] represents time as an operator, and has been shown elsewhere to yield the recently observed phenomena of quantum interference in time, quantum diffraction in time and quantum entanglement in time. The Stueckelberg wave equation as extended to a spin–1/2 particle by Horwitz and Arshansky [J. Phys. A: Math. Gen. 15, L659 (1982)] is shown here to yield the electron g–factor g = 2(1+ α/2π), to leading order in the renormalized fine structure constant α, in agreement with the quantum electrodynamics of Schwinger [Phys. Rev., 73, 416L (1948)]. PACS numbers: 03.65.Nk, 03.65.Pm, 03.65.Sq Keywords: relativistic quantum mechanics, quantum coherence in time, anomalous magnetic moment 1. Introduction The relativistic quantum mechanics of Dirac [1, 2] represents position as an operator and time as a parameter. The Dirac wave functions can be normalized over space with respect to a Lorentz–invariant measure of volume [2, Ch 3], but cannot be meaningfully normalized over time. Thus the Dirac formalism offers no precise meaning for the expectation of time [3, 9.5], and offers no representations for the recently– § observed phenomena of quantum interference in time [4, 5], quantum diffraction in time [6, 7] and quantum entanglement in time [8]. Quantum interference patterns and diffraction patterns [9, Chs 1–3] are multi–lobed probability distribution functions for the eigenvalues of an Hermitian operator, which is typically position. -
Bohmian Mechanics Versus Madelung Quantum Hydrodynamics
Ann. Univ. Sofia, Fac. Phys. Special Edition (2012) 112-119 [arXiv 0904.0723] Bohmian mechanics versus Madelung quantum hydrodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria It is shown that the Bohmian mechanics and the Madelung quantum hy- drodynamics are different theories and the latter is a better ontological interpre- tation of quantum mechanics. A new stochastic interpretation of quantum me- chanics is proposed, which is the background of the Madelung quantum hydro- dynamics. Its relation to the complex mechanics is also explored. A new complex hydrodynamics is proposed, which eliminates completely the Bohm quantum po- tential. It describes the quantum evolution of the probability density by a con- vective diffusion with imaginary transport coefficients. The Copenhagen interpretation of quantum mechanics is guilty for the quantum mys- tery and many strange phenomena such as the Schrödinger cat, parallel quantum and classical worlds, wave-particle duality, decoherence, etc. Many scientists have tried, however, to put the quantum mechanics back on ontological foundations. For instance, Bohm [1] proposed an al- ternative interpretation of quantum mechanics, which is able to overcome some puzzles of the Copenhagen interpretation. He developed further the de Broglie pilot-wave theory and, for this reason, the Bohmian mechanics is also known as the de Broglie-Bohm theory. At the time of inception of quantum mechanics Madelung [2] has demonstrated that the Schrödinger equa- tion can be transformed in hydrodynamic form. This so-called Madelung quantum hydrodynam- ics is a less elaborated theory and usually considered as a precursor of the Bohmian mechanics. The scope of the present paper is to show that these two theories are different and the Made- lung hydrodynamics is a better interpretation of quantum mechanics than the Bohmian me- chanics. -
Wave-Particle Duality Relation with a Quantum Which-Path Detector
entropy Article Wave-Particle Duality Relation with a Quantum Which-Path Detector Dongyang Wang , Junjie Wu * , Jiangfang Ding, Yingwen Liu, Anqi Huang and Xuejun Yang Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China; [email protected] (D.W.); [email protected] (J.D.); [email protected] (Y.L.); [email protected] (A.H.); [email protected] (X.Y.) * Correspondence: [email protected] Abstract: According to the relevant theories on duality relation, the summation of the extractable information of a quanton’s wave and particle properties, which are characterized by interference visibility V and path distinguishability D, respectively, is limited. However, this relation is violated upon quantum superposition between the wave-state and particle-state of the quanton, which is caused by the quantum beamsplitter (QBS). Along another line, recent studies have considered quantum coherence C in the l1-norm measure as a candidate for the wave property. In this study, we propose an interferometer with a quantum which-path detector (QWPD) and examine the generalized duality relation based on C. We find that this relationship still holds under such a circumstance, but the interference between these two properties causes the full-particle property to be observed when the QWPD system is partially present. Using a pair of polarization-entangled photons, we experimentally verify our analysis in the two-path case. This study extends the duality relation between coherence and path information to the quantum case and reveals the effect of quantum superposition on the duality relation. -
Defense Primer: Quantum Technology
Updated June 7, 2021 Defense Primer: Quantum Technology Quantum technology translates the principles of quantum Successful development and deployment of such sensors physics into technological applications. In general, quantum could lead to significant improvements in submarine technology has not yet reached maturity; however, it could detection and, in turn, compromise the survivability of sea- hold significant implications for the future of military based nuclear deterrents. Quantum sensors could also sensing, encryption, and communications, as well as for enable military personnel to detect underground structures congressional oversight, authorizations, and appropriations. or nuclear materials due to their expected “extreme sensitivity to environmental disturbances.” The sensitivity Key Concepts in Quantum Technology of quantum sensors could similarly potentially enable Quantum applications rely on a number of key concepts, militaries to detect electromagnetic emissions, thus including superposition, quantum bits (qubits), and enhancing electronic warfare capabilities and potentially entanglement. Superposition refers to the ability of quantum assisting in locating concealed adversary forces. systems to exist in two or more states simultaneously. A qubit is a computing unit that leverages the principle of The DSB concluded that quantum radar, hypothesized to be superposition to encode information. (A classical computer capable of identifying the performance characteristics (e.g., encodes information in bits that can represent binary -
Zero-Point Energy and Interstellar Travel by Josh Williams
;;;;;;;;;;;;;;;;;;;;;; itself comes from the conversion of electromagnetic Zero-Point Energy and radiation energy into electrical energy, or more speciÞcally, the conversion of an extremely high Interstellar Travel frequency bandwidth of the electromagnetic spectrum (beyond Gamma rays) now known as the zero-point by Josh Williams spectrum. ÒEre many generations pass, our machinery will be driven by power obtainable at any point in the universeÉ it is a mere question of time when men will succeed in attaching their machinery to the very wheel work of nature.Ó ÐNikola Tesla, 1892 Some call it the ultimate free lunch. Others call it absolutely useless. But as our world civilization is quickly coming upon a terrifying energy crisis with As you can see, the wavelengths from this part of little hope at the moment, radical new ideas of usable the spectrum are incredibly small, literally atomic and energy will be coming to the forefront and zero-point sub-atomic in size. And since the wavelength is so energy is one that is currently on its way. small, it follows that the frequency is quite high. The importance of this is that the intensity of the energy So, what the hell is it? derived for zero-point energy has been reported to be Zero-point energy is a type of energy that equal to the cube (the third power) of the frequency. exists in molecules and atoms even at near absolute So obviously, since weÕre already talking about zero temperatures (-273¡C or 0 K) in a vacuum. some pretty high frequencies with this portion of At even fractions of a Kelvin above absolute zero, the electromagnetic spectrum, weÕre talking about helium still remains a liquid, and this is said to be some really high energy intensities. -
The Quantum Potential And''causal''trajectories For
REFERENCE IC/88/161 \ ^' I 6 AUG INTERNATIONAL CENTRE FOR / Co THEORETICAL PHYSICS THE QUANTUM POTENTIAL AND "CAUSAL" TRAJECTORIES FOR STATIONARY STATES AND FOR COHERENT STATES A.O. Barut and M. Bo2ic INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION IC/88/161 I. Introduction International Atomic Energy Agency During the last decade Bohm's causal trajectories based on the and concept of the so called "quantum potential" /I/ have been evaluated United Nations Educational Scientific and Cultural Organization in a number of cases, the double slit /2,3/, tunnelling through the INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS barrier /4,5/, the Stern-Gerlach magnet /6/, neutron interferometer /8,9/, EPRB experiment /10/. In all these works the trajectories have been evaluated numerically for the time dependent wave packet of the Schrodinger equation. THE QUANTUM POTENTIAL AND "CAUSAL" TRAJECTORIES FOR STATIONARY STATES AND FOR COHERENT STATES * In the present paper we study explicitly the quantum potential and the associated trajectories for stationary states and for coherent states. We show how the quantum potential arises from the classical A.O. Barut ** and M. totii *** action. The classical action is a sum of two parts S ,= S^ + Sz> one International Centre for Theoretical Physics, Trieste, Italy. part Sj becomes the quantum action, the other part S2 is shifted to the quantum potential. We also show that the two definitions of causal ABSTRACT trajectories do not coincide for stationary states. We show for stationary states in a central potential that the quantum The content of our paper is as follows. Section II is devoted to action S is only a part of the classical action W and derive an expression for the "quantum potential" IL in terms of the other part. -
The Concept of the Photon—Revisited
The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser. -
Photon Wave Mechanics: a De Broglie - Bohm Approach
PHOTON WAVE MECHANICS: A DE BROGLIE - BOHM APPROACH S. ESPOSITO Dipartimento di Scienze Fisiche, Universit`adi Napoli “Federico II” and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli Mostra d’Oltremare Pad. 20, I-80125 Napoli Italy e-mail: [email protected] Abstract. We compare the de Broglie - Bohm theory for non-relativistic, scalar matter particles with the Majorana-R¨omer theory of electrodynamics, pointing out the impressive common pecu- liarities and the role of the spin in both theories. A novel insight into photon wave mechanics is envisaged. 1. Introduction Modern Quantum Mechanics was born with the observation of Heisenberg [1] that in atomic (and subatomic) systems there are directly observable quantities, such as emission frequencies, intensities and so on, as well as non directly observable quantities such as, for example, the position coordinates of an electron in an atom at a given time instant. The later fruitful developments of the quantum formalism was then devoted to connect observable quantities between them without the use of a model, differently to what happened in the framework of old quantum mechanics where specific geometrical and mechanical models were investigated to deduce the values of the observable quantities from a substantially non observable underlying structure. We now know that quantum phenomena are completely described by a complex- valued state function ψ satisfying the Schr¨odinger equation. The probabilistic in- terpretation of it was first suggested by Born [2] and, in the light of Heisenberg uncertainty principle, is a pillar of quantum mechanics itself. All the known experiments show that the probabilistic interpretation of the wave function is indeed the correct one (see any textbook on quantum mechanics, for 2 S. -
Quantum Information Science
Quantum Information Science Seth Lloyd Professor of Quantum-Mechanical Engineering Director, WM Keck Center for Extreme Quantum Information Theory (xQIT) Massachusetts Institute of Technology Article Outline: Glossary I. Definition of the Subject and Its Importance II. Introduction III. Quantum Mechanics IV. Quantum Computation V. Noise and Errors VI. Quantum Communication VII. Implications and Conclusions 1 Glossary Algorithm: A systematic procedure for solving a problem, frequently implemented as a computer program. Bit: The fundamental unit of information, representing the distinction between two possi- ble states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical system that registers a bit of information. Boolean Algebra: The mathematics of manipulating bits using simple operations such as AND, OR, NOT, and COPY. Communication Channel: A physical system that allows information to be transmitted from one place to another. Computer: A device for processing information. A digital computer uses Boolean algebra (q.v.) to processes information in the form of bits. Cryptography: The science and technique of encoding information in a secret form. The process of encoding is called encryption, and a system for encoding and decoding is called a cipher. A key is a piece of information used for encoding or decoding. Public-key cryptography operates using a public key by which information is encrypted, and a separate private key by which the encrypted message is decoded. Decoherence: A peculiarly quantum form of noise that has no classical analog. Decoherence destroys quantum superpositions and is the most important and ubiquitous form of noise in quantum computers and quantum communication channels.