Ehrlichia Chaffeensis: a Prototypical Emerging Pathogen

Total Page:16

File Type:pdf, Size:1020Kb

Ehrlichia Chaffeensis: a Prototypical Emerging Pathogen University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Other Publications in Zoonotics and Wildlife Disease Wildlife Disease and Zoonotics 2003 Ehrlichia chaffeensis: a Prototypical Emerging Pathogen Christopher D. Paddock Centers for Disease Control and Prevention, Atlanta James E. Childs Centers for Disease Control and Prevention, Atlanta, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub Part of the Veterinary Infectious Diseases Commons Paddock, Christopher D. and Childs, James E., "Ehrlichia chaffeensis: a Prototypical Emerging Pathogen" (2003). Other Publications in Zoonotics and Wildlife Disease. 59. https://digitalcommons.unl.edu/zoonoticspub/59 This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CLINICAL MICROBIOLOGY REVIEWS, Jan. 2003, p. 37–64 Vol. 16, No. 1 0893-8512/03/$08.00ϩ0 DOI: 10.1128/CMR.16.1.37–64.2003 Ehrlichia chaffeensis: a Prototypical Emerging Pathogen Christopher D. Paddock* and James E. Childs Viral and Rickettsial Zoonoses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia INTRODUCTION .........................................................................................................................................................38 MICROBIOLOGY ........................................................................................................................................................38 Taxonomy and Phylogenetic Placement.................................................................................................................38 Morphology................................................................................................................................................................39 Isolates of E. chaffeensis ...........................................................................................................................................39 Genetic, Antigenic, and Phenotypic Characteristics ............................................................................................40 PATHOGENESIS..........................................................................................................................................................41 Factors Relating to Disease Severity......................................................................................................................41 Pathology....................................................................................................................................................................41 Immunology ...............................................................................................................................................................44 Entry and Survival of E. chaffeensis in the Cell....................................................................................................45 Animal Models of Disease .......................................................................................................................................45 CLINICAL FEATURES ...............................................................................................................................................46 Characteristics of Disease .......................................................................................................................................46 General clinical features......................................................................................................................................46 Hematologic and biochemical abnormalities ....................................................................................................46 Severe or unusual manifestations ......................................................................................................................46 Dual infections ......................................................................................................................................................47 “Asymptomatic” Infection........................................................................................................................................47 Differential Diagnoses ..............................................................................................................................................47 Comparison with Other Ehrlichioses.....................................................................................................................48 Treatment and Prevention.......................................................................................................................................48 LABORATORY DIAGNOSIS......................................................................................................................................49 Serologic Testing.......................................................................................................................................................49 Indirect immunofluorescence assay....................................................................................................................49 Western blotting....................................................................................................................................................49 Other assays ..........................................................................................................................................................50 Visualization of Morulae and Staining Methods .................................................................................................50 PCR Amplification....................................................................................................................................................50 Isolation......................................................................................................................................................................50 EPIDEMIOLOGY AND ECOLOGY..........................................................................................................................51 Geographic Distribution ..........................................................................................................................................51 United States .........................................................................................................................................................51 Other locations......................................................................................................................................................52 Surveillance for HME ..............................................................................................................................................52 Passive surveillance ..............................................................................................................................................52 Active surveillance ................................................................................................................................................53 Mechanisms of Transmission and Seasonality of Infection ...............................................................................53 Patient Demographics and Risk Factors for HME..............................................................................................53 Tick Vectors ...............................................................................................................................................................53 A. americanum........................................................................................................................................................53 Other tick species .................................................................................................................................................54 Vertebrate Reservoirs...............................................................................................................................................54 White-tailed deer...................................................................................................................................................55 Goats.......................................................................................................................................................................55 Domestic dogs........................................................................................................................................................55 Coyotes ...................................................................................................................................................................55 Other species .........................................................................................................................................................56 Factors Influencing the Emergence of HME ........................................................................................................57 Recent clinical recognition or new disease?......................................................................................................57
Recommended publications
  • Ehrlichiosis in Dogs Animal Veterinary Associations Borne Diseases
    21 Working ECAVA F F A E V C A A C V Group on E A F F A E V C Canine A FECAVA Federation of European Companion vector Ehrlichiosis in dogs Animal Veterinary Associations borne diseases WERSJA POPRAWIONA A Ehrlichia spp. !! Ehrlichiosis is a tick-borne disease caused by Ehrlichia spp, an obligate intracellular gram-negative bacterium of the Anaplasmataceae family. In Europe, Ehrlichia canis causes canine monocytic ehrlichiosis ! (CME) The tick Rhipicephalus sanguineus is its main vector in Europe. Dogs and wild canids act as reservoirs. The disease has a subclinical, acute asymptomatic phase and chronic phase. The prognosis for chronically sick dogs is poor, ! !! The incubation period is 1-4 weeks. German Shepherds and Siberian Huskies appear to be more susceptible to clinical ehrlichiosis with more severe clinical !! presentations than other breeds. When to suspect infection? Origin / travelling history Clinical signs o Dogs that live in, originate from or have travelled to countries where the parasite is endemic are at risk. Weight loss, anorexia, lethargy, fever o Dogs in countries not currently considered endemic Bleeding disorders: petechiae/ecchymoses of the skin, mucous o o should not be considered free of risk. membranes and conjunctivas, hyphaema, epistaxis Lymphadenomegaly o How can it be confirmed? o Splenomegaly o Ocular signs: conjunctivitis, uveitis, corneal oedema Blood smear: Visualisation of intracellular bacteria on blood o Neurological signs (less common): seizures, ataxia, paresis, smears stained with Giemsa or similar. Sensitivity is poor: hyperaesthesia, cranial nerve deficits E. canis morulae in monocytes are visualised in only 4% (meningitis/meninigoencephalitis) cases of acute infections.
    [Show full text]
  • Melioidosis: an Emerging Infectious Disease
    Review Article www.jpgmonline.com Melioidosis: An emerging infectious disease Raja NS, Ahmed MZ,* Singh NN** Department of Medical ABSTRACT Microbiology, University of Malaya Medical Center, Kuala Lumpur, Infectious diseases account for a third of all the deaths in the developing world. Achievements in understanding Malaysia, *St. the basic microbiology, pathogenesis, host defenses and expanded epidemiology of infectious diseases have Bartholomew’s Hospital, resulted in better management and reduced mortality. However, an emerging infectious disease, melioidosis, West Smithfield, London, is becoming endemic in the tropical regions of the world and is spreading to non-endemic areas. This article UK and **School of highlights the current understanding of melioidosis including advances in diagnosis, treatment and prevention. Biosciences, Cardiff Better understanding of melioidosis is essential, as it is life-threatening and if untreated, patients can succumb University, Cardiff, UK to it. Our sources include a literature review, information from international consensus meetings on melioidosis Correspondence: and ongoing discussions within the medical and scientific community. N. S. Raja, E-mail: [email protected] Received : 21-2-2005 Review completed : 20-3-2005 Accepted : 30-5-2005 PubMed ID : 16006713 KEY WORDS: Melioidosis, Burkholderia pseudomallei, Infection J Postgrad Med 2005;51:140-5 he name melioidosis [also known as Whitmore dis- in returning travellers to Europe from endemic areas.[14] The T ease] is taken from the Greek word ‘melis’ meaning geographic area of the prevalence of the organism is bound to distemper of asses and ‘eidos’ meaning resembles glanders. increase as the awareness increases. Melioidosis is a zoonotic disease caused by Pseudomonas pseudomallei [now known as Burkholderia pseudomallei], a B.
    [Show full text]
  • Q Fever in Small Ruminants and Its Public Health Importance
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever.
    [Show full text]
  • Tonsillopharyngitis - Acute (1 of 10)
    Tonsillopharyngitis - Acute (1 of 10) 1 Patient presents w/ sore throat 2 EVALUATION Yes EXPERT Are there signs of REFERRAL complication? No 3 4 EVALUATION Is Group A Beta-hemolytic Yes DIAGNOSIS Streptococcus (GABHS) • Rapid antigen detection test infection suspected? (RADT) • roat culture No TREATMENT EVALUATION No A Supportive management Is GABHS confi rmed? B Pharmacological therapy (Non-GABHS) Yes 5 TREATMENT A EVALUATE RESPONSEMIMS Supportive management TO THERAPY C Pharmacological therapy • Antibiotics Poor/No Good D Surgery, if recurrent or complicated response response REASSESS PATIENT COMPLETE THERAPY & REVIEW THE DIAGNOSIS© Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. B269 © MIMS Pediatrics 2020 Tonsillopharyngitis - Acute (2 of 10) 1 ACUTE TONSILLOPHARYNGITIS • Infl ammation of the tonsils & pharynx • Etiologies include bacterial (group A β-hemolytic streptococcus, Haemophilus infl uenzae, Fusobacterium sp, etc) & viral (infl uenza, adenovirus, coronavirus, rhinovirus, etc) pathogens • Sore throat is the most common presenting symptom in older children TONSILLOPHARYNGITIS 2 EVALUATION FOR COMPLICATIONS • Patients w/ sore throat may have deep neck infections including epiglottitis, peritonsillar or retropharyngeal abscess • Examine for signs of upper airway obstruction Signs & Symptoms of Sore roat w/ Complications • Trismus • Inability to swallow liquids • Increased salivation or drooling • Peritonsillar edema • Deviation of uvula
    [Show full text]
  • Coxiella Burnetii
    SENTINEL LEVEL CLINICAL LABORATORY GUIDELINES FOR SUSPECTED AGENTS OF BIOTERRORISM AND EMERGING INFECTIOUS DISEASES Coxiella burnetii American Society for Microbiology (ASM) Revised March 2016 For latest revision, see web site below: https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C ASM Subject Matter Expert: David Welch, Ph.D. Medical Microbiology Consulting Dallas, TX [email protected] ASM Sentinel Laboratory Protocol Working Group APHL Advisory Committee Vickie Baselski, Ph.D. Barbara Robinson-Dunn, Ph.D. Patricia Blevins, MPH University of Tennessee at Department of Clinical San Antonio Metro Health Memphis Pathology District Laboratory Memphis, TN Beaumont Health System [email protected] [email protected] Royal Oak, MI BRobinson- Erin Bowles David Craft, Ph.D. [email protected] Wisconsin State Laboratory of Penn State Milton S. Hershey Hygiene Medical Center Michael A. Saubolle, Ph.D. [email protected] Hershey, PA Banner Health System [email protected] Phoenix, AZ Christopher Chadwick, MS [email protected] Association of Public Health Peter H. Gilligan, Ph.D. m Laboratories University of North Carolina [email protected] Hospitals/ Susan L. Shiflett Clinical Microbiology and Michigan Department of Mary DeMartino, BS, Immunology Labs Community Health MT(ASCP)SM Chapel Hill, NC Lansing, MI State Hygienic Laboratory at the [email protected] [email protected] University of Iowa [email protected] Larry Gray, Ph.D. Alice Weissfeld, Ph.D. TriHealth Laboratories and Microbiology Specialists Inc. Harvey Holmes, PhD University of Cincinnati College Houston, TX Centers for Disease Control and of Medicine [email protected] Prevention Cincinnati, OH om [email protected] [email protected] David Welch, Ph.D.
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Avoidance of Mechanisms of Innate Immune Response by Neisseria Gonorrhoeae
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 4, 367–373 DOI: 10.21307/PM–2019.58.4.367 AVOIDANCE OF MECHANISMS OF INNATE IMMUNE RESPONSE BY NEISSERIA GONORRHOEAE Jagoda Płaczkiewicz* Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Submitted in July, accepted in October 2019 Abstract: Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacteria and an etiological agent of the sexually transmitted disease – gonorrhea. N. gonorrhoeae possesses many mechanism to evade the innate immune response of the human host. Most are related to serum resistance and avoidance of complement killing. However the clinical symptoms of gonorrhea are correlated with a significant pres- ence of neutrophils, whose response is also insufficient and modulated by gonococci. 1. Introduction. 2. Adherence ability. 3. Serum resistance and complement system. 4. Neutrophils. 4.1. Phagocytosis. 4.1.1. Oxygen- dependent intracellular killing. 4.1.2. Oxygen-independent intracellular killing. 4.2. Neutrophil extracellular traps. 4.3. Degranulation. 4.4. Apoptosis. 5. Summary UNIKANIE MECHANIZMÓW WRODZONEJ ODPOWIEDZI IMMUNOLOGICZNEJ PRZEZ NEISSERIA GONORRHOEAE Streszczenie: Neisseria gonorrhoeae (gonokok) to Gram-ujemna dwoinka będąca czynnikiem etiologicznym choroby przenoszonej drogą płciową – rzeżączki. N. gonorrhoeae posiada liczne mechanizmy umożliwiające jej unikanie wrodzonej odpowiedzi immunologicznej gospodarza. Większość z nich związana jest ze zdolnością gonokoków do manipulowania układem dopełniacza gospodarza oraz odpor- nością tej bakterii na surowicę. Jednakże symptomy infekcji N. gonorrhoeae wynikają między innymi z obecności licznych neutrofili, których aktywność jest modulowana przez gonokoki. 1. Wprowadzenie. 2. Zdolność adherencji. 3. Surowica i układ dopełniacza. 4. Neutrofile. 4.1. Fagocytoza. 4.1.1. Wewnątrzkomórkowe zabijanie zależne od tlenu. 4.1.2.
    [Show full text]
  • Amblyomma Maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia
    VECTOR-BORNE AND ZOONOTIC DISEASES Volume 11, Number 12, 2011 ª Mary Ann Liebert, Inc. DOI: 10.1089/vbz.2011.0654 High Rates of Rickettsia parkeri Infection in Gulf Coast Ticks (Amblyomma maculatum) and Identification of ‘‘Candidatus Rickettsia Andeanae’’ from Fairfax County, Virginia Christen M. Fornadel,1 Xing Zhang,1 Joshua D. Smith,2 Christopher D. Paddock,3 Jorge R. Arias,2 and Douglas E. Norris1 Abstract The Gulf Coast tick, Amblyomma maculatum, is a vector of Rickettsia parkeri, a recently identified human pathogen that causes a disease with clinical symptoms that resemble a mild form of Rocky Mountain spotted fever. Because the prevalence of R. parkeri infection in geographically distinct populations of A. maculatum is not fully understood, A. maculatum specimens collected as part of a tick and pathogen surveillance system in Fairfax County, Virginia, were screened to determine pathogen infection rates. Overall, R. parkeri was found in 41.4% of the A. maculatum that were screened. Additionally, the novel spotted fever group Rickettsia sp., tentatively named ‘‘Candidatus Rickettsia andeanae,’’ was observed for the first time in Virginia. Key Words: Amblyomma maculatum—Rickettsia andeanae—Rickettsia parkeri—Virginia. Introduction isolated from Gulf Coast ticks in Texas (Parker et al. 1939). Although the bacterium was pathogenic for guinea pigs he Gulf Coast tick, Amblyomma maculatum Koch, is an (Parker et al. 1939), it was thought to be nonpathogenic for Tixodid tick that has been recognized for its increasing humans until the first confirmed case of human infection was veterinary and medical importance. In the United States the described in 2002 (Paddock et al.
    [Show full text]
  • Laboratory Manual for Diagnosis of Sexually Transmitted And
    Department of AIDS Control LaborLaboraattororyy ManualManual fforor DiagnosisDiagnosis ofof SeSexxuallyually TTrransmitansmittteded andand RRepreproductivoductivee TTrractact InInffectionsections FOREWORD Sexually Transmitted Infections (STIs) and Reproductive Tract Infections (RTIs) are diseases of major global concern. About 6% of Indian population is reported to be having STIs. In addition to having high levels of morbidity, they also facilitate transmission of HIV infection. Thus control of STIs goes hand in hand with control of HIV/AIDS. Countrywide strengthening of laboratories by helping them to adopt uniform standardized protocols is very important not only for case detection and treatment, but also to have reliable epidemiological information which will help in evaluation and monitoring of control efforts. It is also essential to have good referral services between primary level of health facilities and higher levels. This manual aims to bring in standard testing practices among laboratories that serve health facilities involved in managing STIs and RTIs. While generic procedures such as staining, microscopy and culture have been dealt with in detail, procedures that employ specific manufacturer defined kits have been left to the laboratories to follow the respective protocols. An introduction to quality system essentials and quality control principles has also been included in the manual to sensitize the readers on the importance of quality assurance and quality management system, which is very much the need of the hour. Manual of Operating Procedures for Diagnosis of STIs/RTIs i PREFACE Sexually Transmitted Infections (STIs) are the most common infectious diseases worldwide, with over 350 million new cases occurring each year, and have far-reaching health, social, and economic consequences.
    [Show full text]
  • Purple Bacteria and Their Relatives”
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1988, p. 321-325 Vol. 38, No. 3 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2* AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 Kid, Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I, Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a, p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. Phylogenetic interpretations derived from the study of the interim while the phylogenetic data are being integrated ribosomal ribonucleic acid (rRNA) sequences and oligonu- into formal bacterial taxonomy. It does not appear to be cleotide catalogs provide an important factual base for inappropriate or confusing to use the protean prefix because arrangements of higher taxa of bacteria (25, 26). A recent of the genus Proteus among the Proteobacteria; the reasons workshop organized by the International Committee on for use are clear enough. Systematic Bacteriology recognized that a particularly di- This new class is so far only definable in phylogenetic verse but related group of gram-negative bacteria, including terms.
    [Show full text]
  • Ehrlichiosis in Brazil
    Review Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 20, n. 1, p. 1-12, jan.-mar. 2011 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Ehrlichiosis in Brazil Erliquiose no Brasil Rafael Felipe da Costa Vieira1; Alexander Welker Biondo2,3; Ana Marcia Sá Guimarães4; Andrea Pires dos Santos4; Rodrigo Pires dos Santos5; Leonardo Hermes Dutra1; Pedro Paulo Vissotto de Paiva Diniz6; Helio Autran de Morais7; Joanne Belle Messick4; Marcelo Bahia Labruna8; Odilon Vidotto1* 1Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina – UEL 2Departamento de Medicina Veterinária, Universidade Federal do Paraná – UFPR 3Department of Veterinary Pathobiology, University of Illinois 4Department of Veterinary Comparative Pathobiology, Purdue University, Lafayette 5Seção de Doenças Infecciosas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul – UFRGS 6College of Veterinary Medicine, Western University of Health Sciences 7Department of Clinical Sciences, Oregon State University 8Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade de São Paulo – USP Received June 21, 2010 Accepted November 3, 2010 Abstract Ehrlichiosis is a disease caused by rickettsial organisms belonging to the genus Ehrlichia. In Brazil, molecular and serological studies have evaluated the occurrence of Ehrlichia species in dogs, cats, wild animals and humans. Ehrlichia canis is the main species found in dogs in Brazil, although E. ewingii infection has been recently suspected in five dogs. Ehrlichia chaffeensis DNA has been detected and characterized in mash deer, whereas E. muris and E. ruminantium have not yet been identified in Brazil. Canine monocytic ehrlichiosis caused by E. canis appears to be highly endemic in several regions of Brazil, however prevalence data are not available for several regions.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]