Handbook of Sensor Technical Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Sensor Technical Characteristics ’ >‘: NASA j z RP 1087 i NASA c.1 Reference Publication 1087 July 1982 Handbook of Sensor Technical Characteristics Shelby Tanner First Edition - I TECH LIBRARY KAFB, NM NASA Reference Publication - 1087 1982 Handbook of Sensor Technical Characteristics Shelby Tanner Systematics General Corporation S ter Ling, Virgin ia National Aeronautics and Space Administration Scientific and Technical Information Branch __ :.-__.__..._ --- . _. _ FOREWORD This document is a compendium of information on Space and Terrestrial Applications remote sensor systems.The sensorsystems presented in this book range from those experimental systems flown on early flights to those highly sophisticated sensors currently under development or planned for future missions. The sensor systems are presented in alphabetical order in the main section of this book. Each sheet identifies the remote sensor and includes information on its objectives, description, technical characteristics, data products obtained when appropriate, data archives location, period of operation, measurement parameters and potential derived parameters. Not all sensors have the same degree of information dependent upon the current state of development and the inability to obtain complete information for all sensors. Each sensor in this book has been indexed in each of the following indices: 1) Index of Remote Sensors by Status and Spacecraft, i.e., Flight, Future Flight, and Development. 2) Index of Remote Sensors by Alphabetical Order and Major Derived Parameters, e.g., atmospheric trace constituents, solar constant, and earth resources phenomena. 3) List of Remote Sensors by Instrument Type, e.g., radiometers, spectrometers, and radars. A list of spacecraft acronyms and a list of remote sensor acronyms are presented in the backof the book for reference purposes. The information presented in this book was compiled by the Systematics General Corporation, Sterling, Virginia,forthe Office of Space and Terrestrial Applications, NASA Headquarters, underthe direction of Mr. John Kiebler and Mr. Jules Lehmann. TABLE OF CONTENTS REMOTE SENSOR TITLE PAGE Active Cavity Radiometer (ACR) .............................................. .l Advanced Limb Scanner (ALS) .............................................. .3 Advanced Meteorological Temperature Sounder (AMTS) ............................. .7 Advanced Microwave Moisture Sensor (AMMS). ................................... 10, Advanced Microwave Sounding Unit (AMSU) ..................................... 11 Advanced Very High Resolution Radiometer (AVHRR) ............................. .13 Advanced Vidicon Camera System (AVCS) ................................. 16,18,20 .. Altimeter(Alt).........................................................2 3 Atmosphere General Circulation Experiment (AGCE) .............................. .26 Atmospheric Trace Molecules Observed by Spectroscopy (ATMOS) ..................... .27 Atmospheric X-Ray imaging Spectrometer (AXIS) ................................ .29 Backscatter Ultraviolet Spectrometer (BUV). .................................... .31 Boundary Layer Lidar System (BLLS). ......................................... .34 Cloud Lidar System (CLS) ................................................ .35 Cloud Top Scanner (CTS) ................................................. .36 Coastal Zone Color Scanner (CZCS) .......................................... .37 Coastal Zone Color Scanner/2 (CZCS/2) ....................................... ,40 Cryogenic Limb Array Etalon Spectrometer (CLAES) : ............................. .43 Cryogenic Limb Scanning Interferometer Radiometer (CLIR) ......................... .46 Cryogenic Upper Atmosphere Limb Emission Radiometer (CULER). .................... .48 Day/Night Camera System (DNCS). .......................................... .52 Differential Correlation Radiometer (DCR) ..................................... .54 Earth Radiation Budget (ERB). ............................................. .55 Earth Radiation Budget Experiment (ERBE) .................................... .58 Earth Terrain Camera (ETC) ............................................... .62 Electrically Scanning Microwave Radiometer (ESMR) ............................ 64.67 Feature Identification and Location Experiment (FILE). ............................ .69 Filter-Wedge Spectrometer (FWS). ........................................... .71 Flat Plate Radiometer (FPR). .............................................. .74 Fluxgate Magnetometer (FMAG) ............................................ .76 Four-Channel Infrared Radiometer. .......................................... .78 Halogen Occultation Experiment (HALOE) ..................................... ,80 Heat Capacity Mapping Radiometer (HCMR) .................................... 83 High Energy Particle Spectrometer (HEPS). ..................................... 86 High Resolution Doppler lmager (HRDI). ...................................... 88 High Resolution Global Measurements of Atmospheric Ozone (GLIMPSE: Global Limb Photometric Scanning Experiment). ................... 91 High Resolution Infrared Radiometer (HRI R). ................................ 95.98 High Resolution Infrared Radiation Sounder (HI RS) ............................... 100 High Resolution Infrared Radiation Sounder-2 (HI RS-2). ............................ 103 Image Dissector Camera System (IDCS) ....................................... .106 Imaging Spectrometric Observatory (ISO) ...................................... 109 Improved Stratospheric and Mesospheric Sounder (ISAMS). .......................... 111 V - TABLE OF CONTENTS (Continued) REMOTE SENSOR TITLE PAGE Infrared Interferometer/Spectrometer (IRIS) ................................. I I 4,117 infrared Spectrometer (IR) ............................................... .I20 Infrared Temperature Profile Radiometer (ITPR) ................................ .I23 Ion Convection Electrodynamics (ICE) ....................................... .I27 Large Antenna Multifrequency Microwave Radiometer (LAMMR) ...................... 130 L-Band Radiometer (LBR) ............................................... .I32 LidarSystemforOHand03 .............................................. .I35 Limb Infrared Monitor of the Stratosphere (LIMS) ................................ I 37 Limb Radiance Inversion Radiometer (LRIR). ................................... 140 Low Resolution Non-Scanning Radiometer (LRNR) ............................... 142 Low Resolution Omnidirectional Radiometer (LROR) .............................. I 44 Magnetometer (MAG) ................................................... 146 Measurement of Air Pollution from Shuttle (MAPS). ............................... I 49 Medium Energy Particle Spectrometer (MEPS) ................................... 151 Medium Resolution Infrared Radiometer (M RI R) ................................. 153 Microwave Limb Sounder (MLS) ............................................ 156 Microwave Pressure Sounder (MPS). .......................................... 159 Microwave Radiometer/Scatterometer and Altimeter (MRSA) ......................... 161 Monitor of Ultraviolet Solar Energy (MUSE) .................................... 164 Multispectral Cloud Radiometer (MCR). ....................................... 166 Multispectral Linear Array (MLA) ........................................... 167 Multispectral Photographic Facility (MPF). ..................................... 169 Multispectral Scanner (MSS) .............................................. .I72 Nighttime/Daytime Optical Survey of Lightning (NOSL) ............................ 175 Nimbus-E Microwave Spectrometer (NEMS/SCAMS) ............................... 177 Ocean Color Experiment (OCE) ............................................. 180 1.27 Micron Airglow Sensor ............................................... 182 Pressure Modulator Radiometer (PMR) . 183 Radar Altimeter (ALT). .............................................. 186,188 Return Beam Vidicon Camera System (RBVC) ................................... 190 Satellite Infrared Spectrometer (SIRS) ........................................ 193 Scalar Magnetometer ................................................... .196 Scanning Microwave Spectrometer (SCAMS) .................................... 198 Scanning Multichannel Microwave Radiometer (SMMR) ............................ .201 Scanning Radiometer (SR) ............................................ .205,208 Seasat-A Satellite Scatterometer (SASS) ...................................... .211 Selective Chopper Radiometer (SCR) ........................................ .213 Shuttle Imaging Radar (SIR) .............................................. .216 Shuttle Imaging Radar-A (SIR-A). .......................................... .220 Shuttle Multispectral Infrared Radiometer (SMIRR) ............................... 223 vi TABLE OF CONTENTS (Continued) REMOTE SENSOR TITLE PAGE Solar Backscatter Ultraviolet Spectrometer (SBUV) ............................... .225 Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS). ...................................... .227 Solar Constant Variations (SCV) ........................................... .230 Solar Ultraviolet Monitor (SUM) ........................................... .231 Solar Ultraviolet Spectral lrradiance Monitor (SUSIM) ............................. .232 Spin-Scan Cloud Cover Camera (SSCC) .................................... .:235,236 Stratospheric Aerosol and Gas Experiment (SAGE) ..............................
Recommended publications
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • SWIFTS and SWIFTS-LA: Two Concepts for High Spectral Resolution Static Micro-Imaging Spectrometers
    EPSC Abstracts Vol. 9, EPSC2014-439-1, 2014 European Planetary Science Congress 2014 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2014 SWIFTS and SWIFTS-LA: two concepts for high spectral resolution static micro-imaging spectrometers E. Le Coarer(1), B. Schmitt(1), N. Guerineau (2), G. Martin (1) S. Rommeluere (2), Y. Ferrec (2) F. Simon (1) F. Thomas (1) (1) Univ. UGA ,CNRS, Lab. IPAG, Grenoble, France. (2) ONERA/DOTA Palaiseau France ([email protected] grenoble.fr). Abstract All these instruments use either optical gratings, Fourier transform or AOTF spectrometers. The two SWIFTS (Stationary-Wave Integrated Fourier first types need moving mirrors to scan spectrally Transform Spectrometer) represents a family of very thus adding complexity and failure risk in space. The compact spectrometers based on detection of interesting solution of AOTF, without moving part standing waves for which detectors play itself a role (only piezo) is however limited in resolution to a few in the interferential detection mechanism. The aim of cm-1 due to limitation in monocrystal size (fragile). this paper is to illustrate how these spectrometers can Strong limitations of these instruments in terms of be used to build efficient imaging spectrometers for performances (spectral & spatial resolution and range, planetary exploration inside dm3 instrumental volume. S/N ratio) come from their already large mass, The first mode (SWIFTS) is devoted to high spectral volume, and power consumption. Further increasing resolving power imaging (R~10000-50000) for one of these characteristics will be at the cost of even 40x40 pixels field of view. The second mode bigger instruments.
    [Show full text]
  • The Cassini Ultraviolet Imaging Spectrograph Investigation
    THE CASSINI ULTRAVIOLET IMAGING SPECTROGRAPH INVESTIGATION 1, 1 1 LARRY W. ESPOSITO ∗, CHARLES A. BARTH , JOSHUA E. COLWELL , GEORGE M. LAWRENCE1, WILLIAM E. McCLINTOCK1,A. IAN F. STEWART1, H. UWE KELLER2, AXEL KORTH2, HANS LAUCHE2, MICHEL C. FESTOU3,ARTHUR L. LANE4, CANDICE J. HANSEN4, JUSTIN N. MAKI4,ROBERT A. WEST4, HERBERT JAHN5, RALF REULKE5, KERSTIN WARLICH5, DONALD E. SHEMANSKY6 and YUK L. YUNG7 1University of Colorado, Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, CO 80303, U.S.A. 2Max-Planck-Institut fur¨ Aeronomie, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany 3Observatoire Midi-Pyren´ ees,´ 14 avenue E. Belin, F31400 Toulouse, France 4JetPropulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 5Deutsches Zentrum fur¨ Luft und Raumfahrt, Institut fur¨ Weltraumsensorik und Planetenerkundung, Rutherford Strasse 2, 12489 Berlin, Germany 6University of Southern California, Department of Aerospace Engineering, 854 W. 36th Place, Los Angeles, CA 90089, U.S.A. 7California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125, U.S.A. (∗Author for correspondence: E-mail: [email protected]) (Received 8 July 1999; Accepted in final form 18 October 2000) Abstract. The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the Cassini orbiter spacecraft. UVIS has two spectrographic channels that provide images and spectra covering the ranges from 56 to 118 nm and 110 to 190 nm. A third optical path with a solar blind CsI photocathode is used for high signal-to-noise-ratio stellar occultations by rings and atmospheres. A separate Hydrogen Deuterium Absorption Cell measures the relative abundance of deuterium and hydrogen from their Lyman-α emission.
    [Show full text]
  • VIRTIS/Venus Express Summary
    VIRTIS for Venus Express Pierre Drossart# and Giuseppe Piccioni&, December 2002 #LESIA, Obs. Paris and &IASF,Rome VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) is a complex instrument initially devoted to the remote sensing study of comet Wirtanen on the Rosetta mission, at wavelengths between 0.3 and 5 mm. The focal planes, with state of the art CCD and infrared detectors achieve high sensitivity for low emissivity sources. Due to the high flexibility of the operational modes of VIRTIS, these performances are also ideally adapted for the study of Venus atmosphere, both on night and day sides. VIRTIS is therefore aimed to provide a 4- dimensional study of Venus atmosphere (2D imaging + spectral dimension + temporal variations), the spectral variations permitting a sounding at different levels of the atmosphere, from the ground up to the thermosphere. The infrared capability of VIRTIS is especially well fitted to the thermal sounding of the night side atmosphere (Taylor et al, 1997), which give a tomography of the atmosphere down to the surface. Precursors: First attempts of imaging spectrometry on the Venus night side from space in the near infrared were made by NIMS/Galileo (Figure 1) in 1990 (Carlson et al, 1990) and VIMS/Cassini in 1999 (Baines et al, 2000). These fast fly-bys gave an idea of how powerful this method of investigation could be at Venus. Unfortunately, the limited duration of the fly- bys allowed only limited investigations, in particular on the meteorological evolution of the clouds. Observation of Venus with a new generation imaging spectrometer like VIRTIS would provide a unique opportunity to continue these investigations on an extended basis.
    [Show full text]
  • The Science Return from Venus Express the Science Return From
    The Science Return from Venus Express Venus Express Science Håkan Svedhem & Olivier Witasse Research and Scientific Support Department, ESA Directorate of Scientific Programmes, ESTEC, Noordwijk, The Netherlands Dmitri V. Titov Max Planck Institute for Solar System Studies, Katlenburg-Lindau, Germany (on leave from IKI, Moscow) ince the beginning of the space era, Venus has been an attractive target for Splanetary scientists. Our nearest planetary neighbour and, in size at least, the Earth’s twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called ‘morning star’ remains a mysterious world! Introduction All of these earlier studies of Venus have given us a basic knowledge of the conditions prevailing on the planet, but have generated many more questions than they have answered concerning its atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and plasma environment. It is now high time that we proceed from the discovery phase to a thorough
    [Show full text]
  • VIRTIS on Venus Express: Retrieval of Real Surface Emissivity on Global Scales
    VIRTIS on Venus Express: retrieval of real surface emissivity on global scales Gabriele E. Arnold*a, David Kappela, Rainer Hausb, Laura Telléz Pedrozaa, c, Giuseppe Piccionid, and Pierre Drossarte aDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany; bWestfälische Wilhelms-Universität, Institute of Planetology, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany; cUniversity Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; dIstituto di Astrofisica e Planetologia Spaziali (IAPS), INAF, Via Fosso del Cavaliere 100, 00133, Roma, Italy; eLaboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, 5 Place Jules Janssen, 92195, Meudon, France. *[email protected]; phone +49-3067055370; fax + 49-3067055303 ABSTRACT The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus’ geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 µm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 – 1.2 µm – surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum.
    [Show full text]
  • The Micromega Investigation Onboard Hayabusa2
    Space Sci Rev (2017) 208:401–412 DOI 10.1007/s11214-017-0335-y The MicrOmega Investigation Onboard Hayabusa2 J.-P. Bibring1 · V. H a m m 1 · Y. Langevin 1 · C. Pilorget1 · A. Arondel1 · M. Bouzit1 · M. Chaigneau1 · B. Crane1 · A. Darié1 · C. Evesque1 · J. Hansotte1 · V. G a r d i e n 1 · L. Gonnod1 · J.-C. Leclech1 · L. Meslier1 · T. Redon1 · C. Tamiatto1 · S. Tosti1 · N. Thoores1 Received: 16 October 2015 / Accepted: 25 January 2017 / Published online: 9 March 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract MicrOmega is a near-IR hyperspectral microscope designed to characterize in situ the texture and composition of the surface materials of the Hayabusa2 target aster- oid. MicrOmega is implemented within the MASCOT lander (Ho et al. in Space Sci. Rev., 2016, this issue, doi:10.1007/s11214-016-0251-6). The spectral range (0.99–3.65 µm) and the spectral sampling (20 cm−1) of MicrOmega have been chosen to allow the identification of most potential constituent minerals, ices and organics, within each 25 µm pixel of the 3.2 × 3.2mm2 FOV. Such an unprecedented characterization will (1) enable the identifica- tion of most major and minor phases, including the potential organic phases, and ascribe their mineralogical context, as a critical set of clues to decipher the origin and evolution of this primitive body, and (2) provide the ground truth for the orbital measurements as well as a reference for the analyses later performed on returned samples. 1 Introduction The Hayabusa mission, launched May 9, 2003, and samples returned to Earth by June 13, 2010, enabled the study of 25143 Itokawa, an S class asteroid (Fujiwara et al.
    [Show full text]
  • Mars Express
    sp1240cover 7/7/04 4:17 PM Page 1 SP-1240 SP-1240 M ARS E XPRESS The Scientific Payload MARS EXPRESS The Scientific Payload Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 AAsec1.qxd 7/8/04 3:52 PM Page 1 SP-1240 August 2004 MARS EXPRESS The Scientific Payload AAsec1.qxd 7/8/04 3:52 PM Page ii SP-1240 ‘Mars Express: A European Mission to the Red Planet’ ISBN 92-9092-556-6 ISSN 0379-6566 Edited by Andrew Wilson ESA Publications Division Scientific Agustin Chicarro Coordination ESA Research and Scientific Support Department, ESTEC Published by ESA Publications Division ESTEC, Noordwijk, The Netherlands Price €50 Copyright © 2004 European Space Agency ii AAsec1.qxd 7/8/04 3:52 PM Page iii Contents Foreword v Overview The Mars Express Mission: An Overview 3 A. Chicarro, P. Martin & R. Trautner Scientific Instruments HRSC: the High Resolution Stereo Camera of Mars Express 17 G. Neukum, R. Jaumann and the HRSC Co-Investigator and Experiment Team OMEGA: Observatoire pour la Minéralogie, l’Eau, 37 les Glaces et l’Activité J-P. Bibring, A. Soufflot, M. Berthé et al. MARSIS: Mars Advanced Radar for Subsurface 51 and Ionosphere Sounding G. Picardi, D. Biccari, R. Seu et al. PFS: the Planetary Fourier Spectrometer for Mars Express 71 V. Formisano, D. Grassi, R. Orfei et al. SPICAM: Studying the Global Structure and 95 Composition of the Martian Atmosphere J.-L. Bertaux, D. Fonteyn, O. Korablev et al.
    [Show full text]
  • Ultraviolet Imaging Spectrometer (UVS) Experiment on Board the NOZOMI Spacecraft: Instrumentation and Initial Results
    Earth Planets Space, 52, 49–60, 2000 Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: Instrumentation and initial results M. Taguchi1, H. Fukunishi2, S. Watanabe3, S. Okano1, Y. Takahashi2, and T. D. Kawahara4 1National Institute of Polar Research, Tokyo 173-8515, Japan 2Department of Geophysics, Tohoku University, Sendai 980-8578, Japan 3Department of Earth and Planetary Science, Hokkaido University, Sapporo 060-0810, Japan 4Department of Information Engineering, Shinshu University, Nagano 380-0922, Japan (Received March 18, 1999; Revised September 20, 1999; Accepted October 19, 1999) An ultraviolet imaging spectrometer (UVS) on board the PLANET-B (NOZOMI) spacecraft has been developed. The UVS instrument consists of a grating spectrometer (UVS-G), an absorption cell photometer (UVS-P) and an electronics unit (UVS-E). The UVS-G features a flat-field type spectrometer measuring emissions in the FUV and MUV range between 110 nm and 310 nm with a spectral resolution of 2–3 nm. The UVS-P is a photometer separately detecting hydrogen (H) and deuterium (D) Lyman α emissions by the absorption cell technique. They take images using the spin and orbital motion of the spacecraft. The major scientific objectives of the UVS experiment at Mars and the characteristics of the UVS are described. The MUV spectra of geocoronal and interplanetary Lyman α emissions and lunar images taken at wavelength of hydrogen Lyman α and the background at 170 nm are presented as representative examples of the UVS observations during the Earth orbiting phase and the Mars transfer phase. 1. Introduction objectives. The ultraviolet spectra of the Martian airglow Due to a weak or no intrinsic magnetic field on Mars, the were obtained by the Mariner 9 ultraviolet spectrometer solar wind plasma can deeply penetrate into the Martian experiment (Barth et al., 1972).
    [Show full text]
  • Methane Mapping with Future Satellite Imaging Spectrometers
    remote sensing Article Methane Mapping with Future Satellite Imaging Spectrometers Alana K. Ayasse 1,*, Philip E. Dennison 2 , Markus Foote 4 , Andrew K. Thorpe 3, Sarang Joshi 4, Robert O. Green 3, Riley M. Duren 3,5, David R. Thompson 3 and Dar A. Roberts 1 1 Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] 2 Department of Geography, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; [email protected] (A.K.T.); [email protected] (R.O.G.); [email protected] (R.M.D.); [email protected] (D.R.T.) 4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (M.F.); [email protected] (S.J.) 5 Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected] Received: 14 November 2019; Accepted: 13 December 2019; Published: 17 December 2019 Abstract: This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with ~200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with ~400 SNR in the SWIR; both products had a 7.5 nm spectral spacing.
    [Show full text]
  • Scientific Payload
    Planetary and Space Science 49 (2001) 1467–1479 www.elsevier.com/locate/planspasci The MESSENGER mission to Mercury: scientiÿc payload Robert E. Golda;∗, Sean C. Solomonb, RalphL. McNutt Jr. a, Andrew G. Santoa, James B. Abshirec, Mario H. Acu˜nac, Robert S. Afzalc, Brian J. Andersona, G. Bruce Andrewsa, Peter D. Bedinid, John Caind, Andrew F. Chenga, Larry G. Evansc, William C. Feldmane, Ronald B. Follasc, George Gloecklerd;f , John O. Goldstena, S. Edward Hawkins IIIa, Noam R. Izenberga, Stephen E. Jaskuleka, Eleanor A. Ketchumc, Mark R. Lanktong, David A. Lohra, Barry H. Mauka, William E. McClintockg, Scott L. Murchiea, Charles E. Schlemm IIa, David E. Smithc, Richard D. Starrc, Thomas H. Zurbuchend aThe John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA cNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA dDepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA eLos Alamos National Laboratory, Los Alamos, NM 87545, USA f Department of Physics, University of Maryland, College Park, MD 20742, USA gLaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA Received 1 November 2000; accepted 12 January 2001 Abstract The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission will send the ÿrst spacecraft to orbit the planet Mercury. A miniaturized set of seven instruments, along with the spacecraft telecommunications system, provide the means of achieving the scientiÿc objectives that motivate the mission. The payload includes a combined wide- and narrow-angle imaging system; -ray, neutron, and X-ray spectrometers for remote geochemical sensing; a vector magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-infrared spectrometer to detect atmospheric species and map mineralogical absorption features; and an energetic particle and plasma spectrometer to characterize ionized species in the magnetosphere.
    [Show full text]
  • Npoess Acronyms
    Northrop Grumman Space & Mission Systems Corp. Space Technology One Space Park Redondo Beach, CA 90278 Engineering & Manufacturing Development (EMD) Phase Acquisition &Operations Contract CAGE NO. 11982 NPOESS ACRONYMS DATE: 3 March 2009 DOC D35838 REV. H PREPARED BY: ___________________________________ Rand Nelson, System Engineering IPT ELECTRONIC APPROVAL SIGNATURES: ____________________________________ ___________________________________ Fabrizio Pela, SE&I IPT Lead Keith Reinke, GS IPT Lead ____________________________________ ___________________________________ Mary Ann Chory, SS IPT Lead Ben James, O&S IPT Lead ____________________________________ ___________________________________ Joe Snyder, Chief Software Engineer Andrea Yeiser, PL IPT Lead ____________________________________ ___________________________________ Roy Tsugawa, AD&P IPT Lead Clark Snodgrass, SEITO Director Prepared by Prepared for Northrop Grumman Space Technology Department of the Air Force One Space Park NPOESS Integrated Program Office Redondo Beach, CA 90278 C/O SMC/CIK 2420 Vela Way, Suite 1467-A8 Los Angeles AFB, CA 90245-4659 DISTRIBUTION STATEMENT F: Distribution statement “F” signifies that further dissemination should only be made as Under directed by the controlling DoD Office (NPOESS IPO). Ref Contract No. F04701-02-C-0502 DODD 5230.24D. This document has been identified per the NPOESS Common Data Format Control Book – External Volume 5 Metadata, D34862-05, Appendix B as a document to be provided to the NOAA Comprehensive Large Array-data D35838, H. PDMO Released: 2009-03-12 (VERIFY REVISION STATUS) Stewardship System (CLASS) via the delivery of NPOESS Document Release Packages to CLASS. PD O M Northrop Grumman Space & Mission Systems Corp. Space Technology One Space Park Redondo Beach, CA 90278 For Document Revision/Change Record No. D35838 Document Pages Revision Date Revision/Change Description Affected -- 8 Nov 02 Initial Issue All Incorporates CCB Approved ECR P164.
    [Show full text]