Proteome-Wide Identification and Characterization of Protein ADP-Ribosylation in Mammalian Cells and Mouse Tissues

Total Page:16

File Type:pdf, Size:1020Kb

Proteome-Wide Identification and Characterization of Protein ADP-Ribosylation in Mammalian Cells and Mouse Tissues Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Proteome-wide identification and characterization of protein ADP-ribosylation in mammalian cells and mouse tissues Leutert, Mario Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-142856 Dissertation Published Version Originally published at: Leutert, Mario. Proteome-wide identification and characterization of protein ADP-ribosylation inmam- malian cells and mouse tissues. 2017, University of Zurich, Faculty of Science. Proteome-wide Identification and Characterization of Protein ADP-ribosylation in Mammalian Cells and Mouse Tissues Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Mario Peter Leutert von Schaffhausen, SH Promotionskommission Prof. Dr. Dr. Michael O. Hottiger (Vorsitz und Leitung der Dissertation) Prof. Dr. Alessandro A. Sartori Prof. Dr. Bernd Wollscheid Prof. Dr. Alexander Bürkle Zürich, 2018 SUMMARY In all organisms the functional and structural plasticity of proteins is defined by post-translational modifications (PTM). ADP-ribosylation is an ancient PTM that comes in a monomeric and polymeric form in mammalian cells and has been identified to be involved in important cellular processes and misregulated in disease. Inhibitors of ADP-ribosylation are now used in the clinic to treat cancer, however many aspects of the PTM remain enigmatic; especially which proteins are modified during which conditions, what are the amino acid acceptor sites and which sites are modified by which ADP-ribosyltransferase. The aim of this thesis was to develop and apply mass spectrometry based methods to systematically and accurately map ADP-ribosylation sites in cells and tissues during physiological and pathological conditions and characterize their biological function. First, we established a new enrichment protocol and optimized the mass spectrometry method, which let to the identification of the oxidative stress-induced ADP-ribosylome in HeLa cells and the finding that serine serves as the major nuclear ADP-ribose acceptor site. The modified proteins were mostly associated with functions in regulation of transcription, chromosome organization as well as DNA and RNA metabolic processes. We also found that a small number of tyrosines are ADP-ribosylated. Furthermore we identified high levels of arginine ADP-ribosylated proteins in mouse liver extracts on proteins having a role in metabolism. Second, we found that ARTD1 is the main mediator of nuclear ADP- ribosylation during oxidative stress in cultured cells, having selectivity for serine and tyrosine modification. ARTD2 only modified a small number of detected targets. This suggested that ARTD1 catalyzes poly-ADP-ribosylation as well as de novo protein ADP-ribosylation. Third we mapped the ADP-ribosylome of heart and skeletal muscle tissue and revealed a widespread role of ARTC1 arginine ADP-ribosylation of extracellular and plasma membrane proteins, as well as ARTC1 independent ADP-ribosylation in mitochondria. Together, we could identify enzyme-substrate relationships for several hundred ADP-ribosylation sites catalyzed by ARTD1, ARTD2, ARTC1 and ARTC2.2 and we got mechanistic insight into the function of a few selected ADP-ribosylation sites. We are now able to accurately localize ADP-ribosylation sites and to map tissue and treatment specific ADP-ribosylation sites. 1 ZUSAMMENFASSUNG Funktionelle und strukturelle Proteineigenschaften können in allen Organismen durch post-translationale Modifikationen (PTM) beeinflusst werden. ADP- Ribosylierung ist eine PTM, welche sowohl als Mono- als auch als Polymer vorkommt, in wichtige zelluläre Prozesse involviert ist und unter pathologischen Konditionen fehlreguliert sein kann. Obwohl Inhibitoren von ADP-Ribosylierung in der Krebsbehandlung eigesetzt werden, bleiben viele Aspekte unklar. Es ist ungenügend geklärt, welche Proteine unter welchen Bedingungen modifiziert sind, welche Aminosäuren als Akzeptoren fungieren und inwieweit die verschiedenen ADP-Ribosyltransferasen in die Etablierung der Modifikation involviert sind. Das Ziel dieser Doktorarbeit war es, massenspektrometrische Methoden zu entwickeln, um systematisch und präzise ADP-Ribosylierungsstellen im Proteom von Zellen und Geweben zu kartieren und deren biologische Funktion zu analysieren. In einem ersten Schritt haben wir ein neues Anreicherungsprotokoll für ADP- ribosylierte Peptide etabliert und die massenspektrometrische Methode dafür optimiert. Mithilfe dieses Protokolls, war es uns gelungen, das durch oxidativen Stress induzierte ADP-Ribosylom in HeLa Zellen zu identifizieren. Die modifizierten Proteine spielen eine Rolle in der transkriptionellen Regulation, Chromosomen Organisation sowie in DNA und RNA metabolischen Prozessen. In einem zweiten Schritt konnten wir zeigen, dass ARTD1 der Hauptregulator der von oxidativem Stress induzierten, nukleären ADP-Ribosylierung war und Proteine selektiv an Serin oder Tyrosin modifizierte. ARTD2 war dagegen nur für die Modifikation einer kleinen Anzahl von unterschiedlichen identifizierten Proteinen verantwortlich. In einem dritten Schritt haben wir das ADP-Ribosylom von Herz- und Skelettmuskeln der Maus charakterisiert. Wir konnten zeigen, dass ARTC1 eine weitreichende Rolle in der Arginin-spezifischen ADP-Ribosylierung von Membranproteinen, sowie extrazellulären Proteinen spielte. Im Gegensatz dazu, haben wir auch eine ARTC1 unabhängige, mitochondriale ADP-Ribosylierung beobachtet. Diese Daten ermöglichten es uns, Substrat-Enzym-Beziehungen für mehrere hundert ARTD1-, ARTD2-, ARTC1- und ARTC2.2-abhängige ADP- Ribosylierungsstellen zu erstellen und die funktionelle Relevanz der Modifikation für einige Proteine zu studieren. Wir sind nun in der Lage ADP-ribosylierte Proteine und deren Modifikationsstellen präzise zu identifizieren und gewebe- und behandlungsspezifische ADP-Ribosylierungsstellen zu charakterisieren. 2 TABLE OF CONTENTS SUMMARY ................................................................................................................................................. 1 ZUSAMMENFASSUNG ............................................................................................................................. 2 TABLE OF CONTENTS ............................................................................................................................ 3 INTRODUCTION ...................................................................................................................................... 6 1 PROTEOFORMS AND PROTEOME COMPLEXITY ............................................................................................. 6 2 PROTEIN ADP-RIBOSYLATION ........................................................................................................................ 8 3 ADP-RIBOSYLTRANSFERASES ......................................................................................................................... 8 3.1 Prokaryotic ADP-ribosylating toxins ............................................................................................... 8 3.2 ARTD family of eukaryotic ADP-ribosyltransferases .............................................................. 10 3.3 ARTC family of eukaryotic ADP-ribosyltransferases ............................................................... 11 3.4 Sirtuins ........................................................................................................................................................ 12 3.5 NAD+ metabolism and ADP-ribosyltransferases ...................................................................... 12 4 ADP-RIBOSYLHYDROLASES .......................................................................................................................... 13 5 ADP-RIBOSYLATION INTERACTORS ........................................................................................................... 14 6 BIOLOGICAL ROLES OF INTRACELLULAR ADP-RIBOSYLATION .............................................................. 15 6.1 Biological functions of PARylation ................................................................................................. 15 6.2 PARP inhibitors as therapeutics ...................................................................................................... 17 7 FUNCTIONAL ROLES OF EXTRACELLULAR ADP-RIBOSYLATION ............................................................ 18 8 LARGE-SCALE ANALYSIS OF POST-TRANSLATIONAL MODIFICATIONS BY MASS SPECTROMETRY ................................................................................................................................................. 20 8.1 Identification of PTMs by mass spectrometry ............................................................................ 20 8.2 Enrichment of PTM carrying peptides .......................................................................................... 22 8.3 Interpreting PTMs by proteomics exemplified by phosphoproteomics .......................... 23 9 PROTEOME-WIDE IDENTIFICATION OF ADP-RIBOSYLATION BY MASS SPECTROMETRY .................. 24 9.1 Challenges in identifying the ADP-ribosylome .......................................................................... 24 9.2 Affinity purification of ADP-ribosylated proteins .................................................................... 25
Recommended publications
  • Increased O-Glcnacylation Rapidly Decreases GABAAR Currents in Hippocampus but Depresses Neuronal Output L
    www.nature.com/scientificreports OPEN Increased O-GlcNAcylation rapidly decreases GABAAR currents in hippocampus but depresses neuronal output L. T. Stewart1,3, K. Abiraman1,3, J. C. Chatham2 & L. L. McMahon1 ✉ O-GlcNAcylation, a post-translational modifcation involving O-linkage of β-N-acetylglucosamine to Ser/Thr residues on target proteins, is increasingly recognized as a critical regulator of synaptic function. Enzymes that catalyze O-GlcNAcylation are found at both presynaptic and postsynaptic sites, and O-GlcNAcylated proteins localize to synaptosomes. An acute increase in O-GlcNAcylation can afect neuronal communication by inducing long-term depression (LTD) of excitatory transmission at hippocampal CA3-CA1 synapses, as well as suppressing hyperexcitable circuits in vitro and in vivo. Despite these fndings, to date, no studies have directly examined how O-GlcNAcylation modulates the efcacy of inhibitory neurotransmission. Here we show an acute increase in O-GlcNAc dampens GABAergic currents onto principal cells in rodent hippocampus likely through a postsynaptic mechanism, and has a variable efect on the excitation/inhibition balance. The overall efect of increased O-GlcNAc is reduced synaptically-driven spike probability via synaptic depression and decreased intrinsic excitability. Our results position O-GlcNAcylation as a novel regulator of the overall excitation/inhibition balance and neuronal output. Synaptic integration and spike initiation in neurons is controlled by synaptic inhibition, which strongly infu- ences neuronal output and information processing1. Importantly, the balance of excitation to inhibition (E/I) is crucial to the proper functioning of circuits, and E/I imbalances have been implicated in a number of neurode- velopmental disorders and neurodegenerative diseases including schizophrenia, autism spectrum disorders, and Alzheimer’s disease2–5.
    [Show full text]
  • Identification and Dynamics of the Human ZDHHC16-ZDHHC6 Palmitoylation Cascade
    RESEARCH ARTICLE Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade Laurence Abrami1†, Tiziano Dallavilla1,2†, Patrick A Sandoz1, Mustafa Demir1, Be´ atrice Kunz1, Georgios Savoglidis2, Vassily Hatzimanikatis2*, F Gisou van der Goot1* 1Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland; 2Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland Abstract S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly *For correspondence: tune its ZDHHC6 activity. [email protected] DOI: https://doi.org/10.7554/eLife.27826.001 (VH); [email protected] (FGG) †These authors contributed equally to this work Introduction Cells constantly interact with and respond to their environment. This requires tight control of protein Competing interests: The function in time and in space, which largely occurs through reversible post-translational modifica- authors declare that no tions of proteins, such as phosphorylation, ubiquitination and S-palmitoylation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • LMAN1 Mouse Monoclonal Antibody [Clone ID: OTI1E3] – TA502138
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA502138 LMAN1 Mouse Monoclonal Antibody [Clone ID: OTI1E3] Product data: Product Type: Primary Antibodies Clone Name: OTI1E3 Applications: FC, IF, IHC, WB Recommended Dilution: WB 1:500~2000, IHC 1:150, IF 1:100, FLOW 1:100 Reactivity: Human, Mouse, Rat, Dog Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human LMAN1 (NP_005561) produced in HEK293T cell. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 0.24 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 54.2 kDa Gene Name: lectin, mannose binding 1 Database Link: NP_005561 Entrez Gene 70361 MouseEntrez Gene 116666 RatEntrez Gene 476186 DogEntrez Gene 3998 Human P49257 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 6 LMAN1 Mouse Monoclonal Antibody [Clone ID: OTI1E3] – TA502138 Background: The protein encoded by this gene is a type I integral membrane protein localized in the intermediate region between the endoplasmic reticulum and the Golgi, presumably recycling between the two compartments. The protein is a mannose-specific lectin and is a member of a novel family of plant lectin homologs in the secretory pathway of animal cells.
    [Show full text]
  • Supplementary Figures 1-14 and Supplementary References
    SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924).
    [Show full text]
  • REVIEW G-Protein-Coupled Receptors, Cholesterol and Palmitoylation: Facts
    371 REVIEW G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats Bice Chini and Marco Parenti1 Cellular and Molecular Pharmacology Section, CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy 1Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy (Correspondence should be addressed to B Chini; Email: [email protected]) Abstract G-protein-coupled receptors (GPCRs) are integral membrane proteins, hence it is not surprising that a number of their structural and functional features are modulated by both proteins and lipids. The impact of interacting proteins and lipids on the assembly and signalling of GPCRs has been extensively investigated over the last 20–30 years, and a further impetus has been given by the proposal that GPCRs and/or their immediate signalling partners (G proteins) can partition within plasma membrane domains, termed rafts and caveolae, enriched in glycosphingolipids and cholesterol. The high content of these specific lipids, in particular of cholesterol, in the vicinity of GPCR transmembranes can affect GPCR structure and/or function. In addition, most GPCRs are post-translationally modified with one or more palmitic acid(s), a 16-carbon saturated fatty acid, covalently bound to cysteine(s) localised in the carboxyl-terminal cytoplasmic tail. The insertion of palmitate into the cytoplasmic leaflet of the plasma membrane can create a fourth loop, thus profoundly affecting GPCR structure and hence the interactions with intracellular partner proteins. This review briefly highlights how lipids of the membrane and the receptor themselves can influence GPCR organisation and functioning. Journal of Molecular Endocrinology (2009) 42, 371–379 G-protein-coupled receptors–cholesterol of phospholipids.
    [Show full text]
  • Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics
    Article pubs.acs.org/jpr Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics † ∥ ‡ ∥ § ∥ † ⊥ † ⊥ Abdelfattah El Ouaamari, , Jian-Ying Zhou, , Chong Wee Liew, , Jun Shirakawa, , Ercument Dirice, , † † † † ‡ Nicholas Gedeon, Sevim Kahraman, Dario F. De Jesus, Shweta Bhatt, Jong-Seo Kim, ‡ ‡ ‡ ‡ Therese R. W. Clauss, David G. Camp, II, Richard D. Smith, Wei-Jun Qian,*, † and Rohit N. Kulkarni*, † Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States ‡ Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States § Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, United States *S Supporting Information ABSTRACT: Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC−MS/MS and quantified ∼1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ∼350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ∼40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models.
    [Show full text]
  • ER-To-Golgi Trafficking and Its Implication in Neurological Diseases
    cells Review ER-to-Golgi Trafficking and Its Implication in Neurological Diseases 1,2, 1,2 1,2, Bo Wang y, Katherine R. Stanford and Mondira Kundu * 1 Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; [email protected] (B.W.); [email protected] (K.R.S.) 2 Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-901-595-6048 Present address: School of Life Sciences, Xiamen University, Xiamen 361102, China. y Received: 21 November 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Membrane and secretory proteins are essential for almost every aspect of cellular function. These proteins are incorporated into ER-derived carriers and transported to the Golgi before being sorted for delivery to their final destination. Although ER-to-Golgi trafficking is highly conserved among eukaryotes, several layers of complexity have been added to meet the increased demands of complex cell types in metazoans. The specialized morphology of neurons and the necessity for precise spatiotemporal control over membrane and secretory protein localization and function make them particularly vulnerable to defects in trafficking. This review summarizes the general mechanisms involved in ER-to-Golgi trafficking and highlights mutations in genes affecting this process, which are associated with neurological diseases in humans. Keywords: COPII trafficking; endoplasmic reticulum; Golgi apparatus; neurological disease 1. Overview Approximately one-third of all proteins encoded by the mammalian genome are exported from the endoplasmic reticulum (ER) and transported to the Golgi apparatus, where they are sorted for delivery to their final destination in membrane compartments or secretory vesicles [1].
    [Show full text]
  • Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and Their Effects on Protein Interactions
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-07-17 Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and their Effects on Protein Interactions Derek Luberli Martinez Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Neuroscience and Neurobiology Commons BYU ScholarsArchive Citation Martinez, Derek Luberli, "Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and their Effects on Protein Interactions" (2007). Theses and Dissertations. 985. https://scholarsarchive.byu.edu/etd/985 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. by Brigham Young University in partial fulfillment of the requirements for the degree of Brigham Young University All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL and by majority vote has been found to be satisfactory. ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the format, citations and bibliographical style are consistent
    [Show full text]
  • An Integrated Approach to Comprehensively Map the Molecular Context of Proteins
    bioRxiv preprint doi: https://doi.org/10.1101/264788; this version posted February 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Liu et al. An integrated approach to comprehensively map the molecular context of proteins Xiaonan Liu1,2, Kari Salokas1,2, Fitsum Tamene1,2,3 and Markku Varjosalo1,2,3* 1Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland 2Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland 3Proteomics Unit, University of Helsinki, Helsinki 00014, Finland *Corresponding author Abstract: Protein-protein interactions underlie almost all cellular functions. The comprehensive mapping of these complex cellular networks of stable and transient associations has been made available by affi nity purifi cation mass spectrometry (AP-MS) and more recently by proximity based labelling methods such as BioID. Due the advancements in both methods and MS instrumentation, an in-depth analysis of the whole human proteome is at grasps. In order to facilitate this, we designed and optimized an integrated approach utilizing MAC-tag combining both AP-MS and BioID in a single construct. We systematically applied this approach to 18 subcellular localization markers and generated a molecular context database, which can be used to defi ne molecular locations for any protein of interest. In addition, we show that by combining the AP-MS and BioID results we can also obtain interaction distances within a complex. Taken together, our combined strategy off ers comprehensive approach for mapping physical and functional protein interactions. Introduction: Majority of proteins do not function in isolation geting the endogenous bait protein, allowing and their interactions with other proteins defi ne purifi cation of the bait protein together with the their cellular functions.
    [Show full text]
  • Regulation of G Protein-Coupled Receptors by Palmitoylation and Cholesterol Alan D Goddard and Anthony Watts*
    Goddard and Watts BMC Biology 2012, 10:27 http://www.biomedcentral.com/1741-7007/10/27 COMMENTARY Open Access Regulation of G protein-coupled receptors by palmitoylation and cholesterol Alan D Goddard and Anthony Watts* See research article www.biomedcentral.com/content/1471-2121/13/6 directed to elucidating GPCR crystal structures and a Abstract number of the structures obtained seem to indicate the Due to their membrane location, G protein-coupled presence of receptor dimers. Intriguingly, the β2-adrenergic receptors (GPCRs) are subject to regulation by soluble receptor (β2AR) crystalized with cholesterol molecules and integral membrane proteins as well as membrane and a post-translationally added palmitate group from components, including lipids and sterols. GPCRs also each protomer forming most of the dimer interface [3], undergo a variety of post-translational modifications, suggesting a role for lipids and sterols, in addition to including palmitoylation. A recent article by Zheng et protein-protein interactions, in GPCR dimeri zation. al. in BMC Cell Biology demonstrates cooperative roles However, it was not clear whether this accurately repre- for receptor palmitoylation and cholesterol binding in sented the conformation of the dimer within native lipid GPCR dimerization and G protein coupling, underlining bilayers. A recent study in BMC Cell Biology by Zheng et the complex regulation of these receptors. al. [4] has revealed a complex interplay between choles- terol, palmitate, receptor dimeri zation and G protein activation. Their study showed that reducing cholesterol Commentary levels or preventing palmitoylation of the μ-opioid G protein-coupled receptors (GPCRs) represent the receptor (OPRM1) reduced receptor dimerization and largest family of integral membrane proteins encoded by Gα association.
    [Show full text]