Thick adherent diamond films on AlN with low thermal barrier resistance Soumen Mandal,∗,† Jerome Cuenca,† Fabien Massabuau,‡ Chao Yuan,¶ Henry Bland,† James W. Pomeroy,¶ David Wallis,§,‡ Tim Batten,k David Morgan,⊥ Rachel Oliver,‡ Martin Kuball,¶ and Oliver A. Williams∗,† †School of Physics and Astronomy, Cardiff University, Cardiff, UK ‡Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, UK ¶Center for Device Thermography and Reliability, Bristol University, Bristol, UK §School of Engineering, Cardiff University, Cardiff, UK kRenishaw plc., Wotton-under-Edge, UK ⊥Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK E-mail: mandals2@cardiff.ac.uk,
[email protected]; williamso@cardiff.ac.uk Abstract Growth of >100 µm thick diamond layer adherent on aluminium nitride is pre- sented in this work. While thick films failed to adhere on untreated AlN films, hy- arXiv:1907.02481v1 [physics.app-ph] 4 Jul 2019 drogen/nitrogen plasma treated AlN films retained the thick diamond layers. Clear differences in zeta potential measurement confirms the surface modification due to hydrogen/nitrogen plasma treatment. Areal Raman maps showed an increase in non- diamond carbon in the initial layers of diamond grown on pre-treated AlN. The presence of non- diamond carbon has minimal effect on the interface between diamond and AlN. The surfaces studied with x-ray photoelectron spectroscopy (XPS) revealed a clear dis- tinction between pre-treated and untreated samples. The surface aluminium goes from 1 nitrogen rich environment to an oxygen rich environment after pre-treatment. Cross section transmission electron microscopy shows a clean interface between diamond and AlN. Thermal barrier resistance between diamond and AlN was found to be in the range of 16 m2K/GW which is a large improvement on the current state-of-the-art.