Solar Power in Africa 2021

Total Page:16

File Type:pdf, Size:1020Kb

Solar Power in Africa 2021 New Research Report Solar Power in Africa 2021 Opportunities for Suppliers, Developers and Investors Research Report Data-set (Excel) The Solar Power in Africa 2021 report will help you: Assess the state of the solar power sector in Africa and identify emerging opportunities Learn about the various policies/regulations governing the solar power sector in African countries Understand the key trends, opportunities, and challenges across the solar power segments (utility-scale, commercial & industrial and minigrids/microgrids) Gauge the in-depth progress and developments in the solar sector across 30 African countries Assess the current and future project pipeline across African countries Identify major project developers, their current initiatives and future plans across solar power segments in key African markets Gain country-wise outlook for solar power sector over the next few years SOLAR POWER IN AFRICA 2021 Table of Contents (draft) Release Date: July 2021 Africa has the potential to be one of the most significant markets in terms of solar power deployment. There is a large unmet demand in the region as close to 600 million Africans do not have access to electricity. Substantial cost reductions in solar PV equipment over the past few years has become the key driver for solar power development. Solar projects of all sizes and categories (utility-scale, commercial & industrial and minigrids) are gaining traction. Policy and regulatory initiatives to add large solar power generation capacities are under way across Africa. The Covid-19 crisis has further promoted solar power as a key solution to Africa’s power crisis and to switch on a continentwide strategy for its recovery. The region is also getting significant support from a large number of development finance institutions, financial donors and climate funds that are looking to mitigate the risks associated with solar projects, both grid-connected and decentralised. SECTION A: MARKET OVERVIEW AND SEGMENT REVIEW 6. Capacity and Investment Outlook (2021-330) Future growth drivers 1. Key Trends and Recent Developments Upcoming tenders, by country Overview Projected solar capacity Key growth drivers - By country Cost competitiveness of solar power - By segment (utility-scale, C&I, minigrids) Solar power's promising attributes - By year Targets and mandates for solar power, by country - By technology Key policy and regulatory developments, by country Key issues and challenges Recent M&A deals Investment requirement Emerging industry structure - By country - By segment (utility-scale, C&I, minigrids) 2. Market Size and Opportunity Current solar power capacity, by country SECTION B: COUNTRY PROFILES Share of solar power in the energy mix Developer wise solar capacity This section will have chapters pertaining to the solar power project pipeline, Projected solar power capacity, by country (2021-2030) investment requirements and capacity outlook for 30 African countries like Investment requirements, by country (2021-2030) Algeria, Angola, Botswana, Cameroon, Democratic Republic of the Congo, Egypt, Ethiopia, Ghana, Guinea, Kenya, Libya, Madagascar, Mauritius, Morocco, 3. Large-sscale Solar Utility Projects Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Growth in capacity for utility-scale projects, by country Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Key operational projects, by country Zimbabwe. Each country profile chapter will provide information on: Key players in the segment Solar power potential Project pipeline, by country Growth of solar power capacity Emerging policy and regulatory regime Key growth drivers Evolving policy and regulatory scenario 4. Solar C&I Market Project allocation mechanism (FiT, competitive bidding, government Growth in capacity for C&I projects, by country schemes, etc.) Key operational projects, by country Recent tender results Key players in the segment Upcoming tenders and projects Project pipeline, by country Cost and tariff trends Policy incentives, by country Key developers and plans Contractor landscape 5. Solar Microgrids and Minigrids Risks and challenges Growth in capacity for microgrids and minigrids, by country Key operational projects, by country Power demand outlook Key players in the segment Solar capacity targets Project pipeline, by country Projected capacity (2021-30) Policy incentives, by country Investment requirements (2021-30) I would like to purchase the “Solar Power in Africa 2021” report: Format (PDF) By May 31, 2021 By June 21, 2021 Price of the report Site Licence (Single Location) Rs 70,000 Rs 85,000 Rs 100,000 GST @ 18% Rs 12,600 Rs 15,300 Rs 18,000 Total Rs 82,600 Rs 100,300 Rs 118,000 Enterprise Licence (Multiple Locations) Rs 105,000 Rs 127,500 Rs 150,000 GST @ 18% Rs 18,900 Rs 22,950 Rs 27,000 ORDER FORM – SOLAR POWER IN AFRICA 2021 Total Rs 123,900 Rs 150,450 Rs 177,000 I am enclosing a cheque/demand draft for Rs ________________________, vide cheque/demand draft no. ______________________ drawn on _______________________ dated ________________ in favour of “India Infrastructure Publishing Pvt. Ltd.” Signature Name (Block Letters) Designation Company Company GST No. Mailing Address Telephone Mobile E-mail Wire transfer details: Beneficiary : India Infrastructure Publishing Pvt. Ltd. Bank Name : The Hongkong and Shanghai Banking Corporation Ltd Bank Address : R-47, Greater Kailash–1, New Delhi - 110048 Account No. : 094179587002 Swift Code : HSBCINBB IFSC Code : HSBC0110006 GSTIN : 07AAACI5880R1ZV Contact details: Raktima Majumdar Senior Manager-Information Products India Infrastructure Publishing Pvt. Ltd., B-17, Qutab Institutional Area, New Delhi - 110 016, India Mobile: +91 8826127521 Email: [email protected] India Infrastructure Research www.indiainfrastructure.com.
Recommended publications
  • The Developing Energy Landscape in South Africa: Technical Report
    The developing energy landscape in South Africa: Technical Report RESEARCH REPORT SERIES RESEARCH REPORT The developing energy landscape in South Africa: Technical Report OCTOBER 2017 Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Suggested citation for this report: ERC, CSIR and IFPRI. 2017. The developing energy landscape in South Africa: Technical Report. Energy Research Centre, University of Cape Town October 2017. Authors: ERC: Gregory Ireland, Faaiqa Hartley, Bruno Merven, Jesse Burton, Fadiel Ahjum, Bryce McCall and Tara Caetano. CSIR: Jarrad Wright IFPRI: Channing Arndt Energy Research Centre University of Cape Town Private Bag X3 Rondebosch 7701 South Africa Tel: +27 (0)21 650 2521 Fax: +27 (0)21 650 2830 Email: [email protected] Website: www.erc.uct.ac.za Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Contents Executive summary ............................................................................................................ 4 1. Introduction ................................................................................................................. 6 2. Global renewable technology trends ......................................................................... 9 2.1 The implications for climate change mitigation .................................................................... 12 3. South African Energy Context ...............................................................................
    [Show full text]
  • Solar Powering Africa Markets, Fi Nance, Technology
    APRIL 2017 Platinum sponsor SPECIAL REPORT Solar powering Africa Markets, fi nance, technology Large Off grid Finance Logistics scale Solar’s growing Bridging the Planning, building role beyond investment gap in and operating Africa’s the grid commercial and successful PV utility solar industrial solar projects in Africa hotspots Solar Powering Africa Introduction Published by Solar Media Ltd. 3rd Floor, America House, This PV Tech Power special report is a unique industry as it seeks new opportunities in the region, and which 2 America Square, resource exploring the trends shaping the fortunes of are explored in depth in this report. London, EC3N 2LU, UK Tel: +44 (0) 207 871 0122 PV in Sub-Saharan Africa, a region that harbours some On p.8 we look at the progress made in the large- www.pv-tech.org of the world’s most promising emerging solar markets. scale segment and why West Africa is emerging as a Editorial Since we fi rst published the report last year, the region particular hotspot for utility solar projects. On p.12 we Head of content: has notched up a number of signifi cant milestones, look at the commercial and industrial sector, with a John Parnell including the completion of new utility-scale plants in particular focus on the new business models emerging Supplement editor: Ben Willis Senegal and Uganda, a price-busting auction in Zambia to support it. Off -grid and mini-grid applications come Reporters: and the signing of a bundle of signifi cant PPAs. under the microscope on pages 15 and 18, and on p.22 Tom Kenning, Danielle Ola There has been progress too in the commercial and we explore some of the innovative solutions being Design & production industrial space, with Kenya seeing its largest indus- developed to aid the planning, building and operating Design and production manager: trial PV hybrid plant reach completion.
    [Show full text]
  • Prospects for Investment in Large-Scale, Grid-Connected Solar Power in Africa
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Prospects for investment in large-scale, grid-connected solar power in Africa Hansen, Ulrich Elmer; Nygaard, Ivan; Pedersen, Mathilde Brix Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, U. E., Nygaard, I., & Pedersen, M. B. (2014). Prospects for investment in large-scale, grid-connected solar power in Africa. UNEP Risø Centre, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Prospects for investment in large-scale, grid-connected solar power in Africa Lang, M. & Mutschler, U., 2013. German Feed-in Tariffs of the Solar Energy Markets in Kenya and Tanzania, 2013. Available at: http://www.germanenergyblog. Working paper. University of Hamburg. de/?page_id=14068. Parnell, J., 2013. Ugandan government signs deal for Lemaire, X., 2011. Off-grid electrification with solar 500MW of solar power.
    [Show full text]
  • Building Bridges
    BUILDING BRIDGES SUMMARY REPORT An Initiative by BUILDING BRIDGES SUMMARY REPORT SOLAR ENERGY FOR SCIENCE SYMPOSIUM 19/20 MAY 2011 DESY HAMBURG www.solar4science.de 4 5 INDEX Executive Summary ...................................................................................... 5 Preface .......................................................................................................... 6 Editorial ......................................................................................................... 8 Reports on Sessions: Opening Session ......................................................................................... 10 Government Panel ...................................................................................... 16 Renewable Energy, Climate Change and Societal Challenges .................... 24 Science, Sustainability and Global Responsibility ........................................ 32 Solar Energy Projects in Europe and MENA ................................................. 40 Bridging Solar Energy from MENA to Europe ............................................... 50 Solar Energy Projects around the World ...................................................... 58 Academic/Educational Projects in MENA..................................................... 64 Scientific Projects in MENA ......................................................................... 70 Round Table Discussion .............................................................................. 78 Conclusions ................................................................................................
    [Show full text]
  • Concentrated Solar Power in Africa
    CONCENTRATING SOLAR POWER IN AFRICA April 2009 Meeting convened by: Report prepared by: Dr Yusaf Samiullah, Deputy DirectorIT &Power Head of Profession, Infrastructure Policy & Researchfor Division DFID The TI-UP Resource Centre in association with: TI-U April 2009 Concentrating Solar Power TABLE OF CONTENTS 1 Project Brief .................................................................................................... 1 2 Key technologies ............................................................................................. 1 2.1 Concentrating Photovoltaics ................................................................... 1 2.2 Solar Parabolic Trough Collector ............................................................. 2 2.3 Linear Fresnel Collector ......................................................................... 5 2.4 Solar Power Tower ................................................................................ 6 2.5 Dish Stirling .......................................................................................... 8 2.6 Updraft Tower ...................................................................................... 9 2.7 Integration into Conventional Power Plants ............................................. 10 2.8 Heat Storage ........................................................................................ 10 3 Current and Planned Installations ..................................................................... 14 3.1 Operational .........................................................................................
    [Show full text]
  • Solar Energy in Sub-Saharan Africa: the Challenges and Opportunities of Technological Leapfrogging
    Munich Personal RePEc Archive Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging Amankwah-Amoah, Joseph 2015 Online at https://mpra.ub.uni-muenchen.de/88627/ MPRA Paper No. 88627, posted 25 Aug 2018 17:28 UTC Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging Joseph Amankwah-Amoah Bristol University School of Economics, Finance & Management, Social Sciences Complex 8 Woodland Road, Clifton, Bristol, BS8 1TN E-mail: [email protected] Tel: 0044 (0) 117 3317936 Cite as: Amankwah Amoah, J. (2015). Solar energy in sub Saharan Africa: The challenges and opportunities of technological leapfrogging. Thunderbird International Business Review, 57(1), ‐ ‐ 15-31. A brief BIOsketch Joseph Amankwah-Amoah is an Assistant Professor (Lecturer) in Management at Bristol University. He holds a Ph.D from the University of Wales, Swansea. His research interests include organizational failure, global business strategy, lateral hiring, liberalization, and the airline and solar PV industries. His research papers have appeared in journals such as the Group & Organization Management, Business History, International Journal of HRM and TIBR. 1 Abstract For decades, Africa was generally perceived as the dumping ground for obsolete technologies. In recent years, technological leapfrogging which is associated with the newly industrialised economies in Asia has transpired in some key industries. In this article, we present the solar photovoltaic industry as one such industry and an integrated model of scaling up solar technologies. We identified five unique models aimed at scaling up solar energy in Africa: state-led, NGOs and other agencies-led, emerging market multinational enterprises-led, Avon and pay-as-you-go models.
    [Show full text]
  • State-Of-The-Art of Mini Grids for Rural Electrification in West Africa
    energies Review State-of-the-Art of Mini Grids for Rural Electrification in West Africa Fernando Antonanzas-Torres 1,* , Javier Antonanzas 2 and Julio Blanco-Fernandez 1 1 Department of Mechanical Engineering, University of La Rioja, 26004 Logroño, Spain; [email protected] 2 Department of Mechanical Engineering, Colorado State University, 430 University Ave, Fort Collins, CO 80523, USA; [email protected] * Correspondence: [email protected] Abstract: The current electrification status in West African countries presents rural electrification rates below 40%, national grid losses above 39% with frequent disruptions, and electricity prices averaging $0.35/kWh, up to national values of $0.66/kWh. With this, off-grid systems have gained great attention during the last decade as energy solutions; especially solar home systems (SHS) and mini grids. Nowadays, 385 mini grids with a power of near 30 MW are operating in West Africa, with 95% based on PV. Since 2019, result-based tenders with international aid funding—more effective than previous competitive tenders—seek to install at least 317 new mini grids in Togo, 250 in Nigeria, 100 in Burkina Faso, and two in Mali. Besides, the market for mini-grid energy access start-ups grew from $19 million in 2013 to $339 million in 2018. Despite this recent development in West Africa, research and data for mini grids in this region is scarce, and it is mostly approached from the technological side, with a striking lack of information regarding the social impact. This work tries to describe the present status of research and current operating installations, as well as the main challenges for future development of off grid mini grids in West Africa, which pose as the missing Citation: Antonanzas-Torres, F.; link between SHS and grid extension.
    [Show full text]
  • South-South Learning on Village-Scale Solar Power Supply Between India and Kenya Kirsten Ulsrud, Harald Rohracher and Charles Muchunku
    Spatial transfer of innovations: South-South learning on village-scale solar power supply between India and Kenya Kirsten Ulsrud, Harald Rohracher and Charles Muchunku The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145439 N.B.: When citing this work, cite the original publication. Ulsrud, K., Rohracher, H., Muchunku, C., (2018), Spatial transfer of innovations: South-South learning on village-scale solar power supply between India and Kenya, Energy Policy, 114, 89-97. https://doi.org/10.1016/j.enpol.2017.11.064 Original publication available at: https://doi.org/10.1016/j.enpol.2017.11.064 Copyright: Elsevier http://www.elsevier.com/ Spatial transfer of innovations: South-South learning on village-scale solar power supply between India and Kenya Kirsten Ulsrud a, Harald Rohracher b, Charles Muchunku c a University of Oslo, Department of Sociology and Human Geography, Postboks 1096, Blindern, 0317 Oslo, Norway, Tel. 00 47 40202708 Email: [email protected] b Linköping University, Department of Thematic Studies – Technology and Social Change, Campus Valla, 58183 Linköping, Sweden, Tel. 0046 70 0896002, Email: [email protected] (corresponding author) c Independent RE Consultant, P. O. Box 76406-00508, Nairobi, Kenya, Tel. +254 720 318053, Email: [email protected] Published as: Ulsrud, K., Rohracher, H. and Muchunku, C. (2018): 'Spatial transfer of innovations: South-South learning on village-scale solar power supply between India and Kenya', Energy Policy 114: 89-97, https://doi.org/10.1016/j.enpol.2017.11.064 Abstract This article presents research on the transfer of sustainable energy innovations between countries of the global South from a socio-technical perspective.
    [Show full text]
  • The Uptake and Diffusion of Solar Power in Africa: Socio-Cultural and Political Insights on a Rapidly Emerging Socio-Technical Transition
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 The uptake and diffusion of solar power in Africa: Socio-cultural and political insights on a rapidly emerging socio-technical transition Ockwell, David; Byrne, Rob; Hansen, Ulrich Elmer; Haselip, James; Nygaard, Ivan Published in: Energy Research and Social Science Link to article, DOI: 10.1016/j.erss.2018.04.033 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ockwell, D., Byrne, R., Hansen, U. E., Haselip, J., & Nygaard, I. (2018). The uptake and diffusion of solar power in Africa: Socio-cultural and political insights on a rapidly emerging socio-technical transition. Energy Research and Social Science, 44, 122-129. https://doi.org/10.1016/j.erss.2018.04.033 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The uptake and diffusion of solar power in Africa: socio-cultural and political insights on a rapidly emerging socio-technical transition Abstract In recent years, we have witnessed a rapid market-driven growth in solar PV technology uptake and diffusion, across various geographies and scales in Africa.
    [Show full text]
  • Internatioinal Solar Power in Africa.Qxp
    VIRTUAL CONFERENCE S LAR P WERIn Africa Progress, Challenges, Outlook and Opportunities February 24-225, 2021 Hosted by: Supported by: 30 per cent discount before January 15, 2021 15 per cent discount before February 4, 2021 REGISTER NOW SOLAR POWER IN AFRICA Background z Africa is gradually shifting from traditional hydropower plants to solar PV to ensure energy access to all and support sustainable economic growth. The key factor driving this trend is substantial cost reductions in solar PV equipment over the past few years. According to an IRENA report, solar PV prices have fallen by 82 per cent over the period 2010-19. In the past two years, particularly in Africa, there has been a decline of 30 per cent in solar PV costs. z Most African countries have set high solar energy targets. For instance, by 2030, Morocco targets 10 GW of solar power capacity, South Africa 8.5 GW and Nigeria 6 GW. Kenya is targeting around 10 GW of solar capacity by 2033, while Egypt is looking to have solar make up 25 per cent of its energy mix. Concerted efforts are being made in many other countries such as Uganda, Ghana and Namibia for creating an enabling policy and regulatory environment to attract investments in this space. z In many respects, Africa has the potential to be one of the most significant markets in terms of solar power deployment. There is a large unmet demand in the region as close to 600 million Africans do not have access to electricity. The region is also getting significant support from a large number of development finance institutions, financial donors and climate funds that are looking to mitigate the risks associated with solar projects, both grid-connected and decentralised.
    [Show full text]
  • Solar Energy in Africa: Powering Responses, Accelerating Inclusive and Sustainable Development
    COVID 19 AND BEYOND - SOLAR ENERGY IN AFRICA: POWERING RESPONSES, ACCELERATING INCLUSIVE AND SUSTAINABLE DEVELOPMENT ABSTRACT The coronavirus disease 2019 (COVID 19) pandemic has led to an unprecedented health and social crisis. The pandemic has been the biggest challenge the world has faced since the Second World War. Beyond the immediate impact on health and society, the pandemic has had a major impact on the energy sector and by implication the global economy which is now on the brink of a recession. Energy access has been crucial in responding to the pandemic from powering healthcare systems to enabling work from home initiatives that are being implemented by employers across the world and enabling online learning for the millions of students that are now out of school. As the number of cases in Africa continue to rise, the issue of access to reliable electricity has taken centre stage. In the midst of erratic power supply or lack power supply altogether, Africa has turned to solar energy to power health centres. Solar energy has already played an important role in driving inclusive and sustainable development in Africa. As countries worldwide begin to contemplate post COVID 19 economic recovery plans, energy has again taken a centre stage on the agenda. The pertinent question has been how countries can transition to renewable energy in light of plummeting oil prices and more specifically, what role renewable energy can play in aiding inclusive and sustainable development post COVID 19. The purpose of this paper is to explore the progress of solar energy in Africa prior to the pandemic, the role that solar energy has played in Africa in responding to the pandemic and how solar energy can aid African countries to recover better post COVID 19.
    [Show full text]
  • The Difficulty with Harnessing the Omnipresent Solar Energy in Africa Hai-Vu Phan SIT Study Abroad
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2009 The luE siveness of Light: The Difficulty With Harnessing the Omnipresent Solar Energy in Africa Hai-Vu Phan SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the African Studies Commons, and the Oil, Gas, and Energy Commons Recommended Citation Phan, Hai-Vu, "The Elusiveness of Light: The Difficulty With Harnessing the Omnipresent Solar Energy in Africa" (2009). Independent Study Project (ISP) Collection. 780. https://digitalcollections.sit.edu/isp_collection/780 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. The Elusiveness of Light The Difficulty with Harnessing the Omnipresent Solar Energy in Africa By Hai-Vu Phan Fall 2009 Switzerland: International Studies, Multilateral Diplomacy, and Social Justice Academic Directors: Gyula Csurgai and Alexandre Lambert Yale University Political Science and International Studies 1 Copyright Permission The author hereby does grant the School for International Training the permission to electronically reproduce and transmit this document to the students, alumni, staff, and faculty of the World Learning Community. The author hereby does grant the School for International Training the permission to electronically reproduce and transmit this document to the public via the World Wide Web or other electronic means. The author hereby does grant the School for International Training the permission to reproduce this document to the public in print format.
    [Show full text]