5.Freshwater Fishes of Northern Vietnam

Total Page:16

File Type:pdf, Size:1020Kb

5.Freshwater Fishes of Northern Vietnam 5.FRESHWATER FISHES OF NORTHERN VIETNAM Maurice Kottelat June 2001 Freshwater Fishes of Northern Vietnam 53 Cranoglanis henrici: Ng & Kottelat, 2000b: 848 Silurus asotus Linnaeus, 1758 (Fig. 110) Remarks. Redescribed in Ng & Kottelat (2000b: 848). Cranoglanis henrici is endemic to the Hong River basin. Silurus asotus: Pellegrin, 1907: 499 (Hanoi) Parasifurus asotus: Pellegrin, 1934: 336 (Hanoi) Parasiiurus asotus: Chevey & Lemasson, 193 7: 10 1 Parasilurus asotus: Mai, 1978: 242 Family SILURIDAE Silurus asotus: Chu & Cui, in Chu & Chen, 1990: 115 (Yunnan: Hekou and Wenshan) Parasilurus azotus: Nguyen, Nguyen & Le, 1999: 27 Pterocryptis cochinchinensis (Vaienciennes, 1840) (Vu Quaw) (Fig. 109) Remarks. Redescribed by Kobayakawa (1989: 158). Parasilurus cochinchinerzsis: Mai, 1978: 243 Parasilurus cochinchinensis: Nguyen, Nguyen & Le, 1999: 27 (Vu Quang) Pterocryptis cochinchinensis: Kottelat, 2001 (Laos: Nam Family PANGASIIDAE Xam) Remarks. Redescribed by Kobayakawa (1989: 162; as Pangasius krempfl Fang & Chaux, 1949 Silurus cochinchinensis). Placed in Pterocryptis by Bombusch (1991). See also Ng (1999: 373). Remarks. There is no record yet of this species from northern Vietnam, but it is expected to enter (at least occasionally) some of the main rivers. The species is Pteroclyptis cucphuongensis (Mai, 1978) known along the coasts of southern Vietnam and Guangdong Province (China) and in freshwaters from Silurus cucphuongensis Mai, 1978: 245 (Cut Phuong) the lower Mekong (Roberts & Vidthayanon, 199 1: 124). As noted by Rainboth (1996b: 155), differences Remarks. Placed in Pterocryptis by Ng & Kottelat between the published descriptions of this species (1998: 393) and Ng (1999: 373). suggest that two species might be involved. ? Pterocryptis gilberti (Hors, 1938) Family AMBLYCIPITIDAE Silurus wynaadensis: Mai, 1978: 244 (Ky Phu, Dai Tu, Bat Thai) Liobagrus sp. Remarks. Silurus wyzaademis is a species known only from southern India. It was recorded from southern Liobagrus nigricauda: Mai, 1978: 248 China by Tchang (1936: 35). Hora (1937: 341) noted that the Chinese species differs from the Indian one and Remarks. The species reported by Mai (1978: 248) as named it S. sinerzsis. As this name was already used for Liobagrus nigricauda is probably misidentified as this another fish species, Hora (1938) renamed it S. gilberti. species is endemic to the Yang&e basin according to He Redescribed by Kobayakawa (1989: 163; as Silurus (in Chu et al., 1999: 106) who records two species in gilbertz). Placed in Pteroczyptis by Bombusch (1991). adjacent areas: L. anguillicauda in “Southeastern The few characters available from Mai’s (1978: China” and L. xiuenensis in Pearl River basin (now 244) record of this species from Vietnam do not agree placed in genus Xiurenbagrus, see Chen & Lunberg, with the diagnostic characters used in Kobayakawa’s 1995). key and the identity of this material needs to be checked. According to Mai, the lower jaw projects forwards beyond the upper jaw and there are 53-59 anal-fin rays. According to Kobayakawa, in P. gilberti the upper jaw projects and there are 57-66 anal-fin rays. Dai (in Chu et al., 1999: 79) records 55-6 1 anal-fm rays and Chen (1977: 201) 58-61. .
Recommended publications
  • SILUROID FISHES of INDIA, BURMA and CEYLON. U
    SILUROID FISHES OF INDIA, BURMA AND CEYLON. 1. LOAOH-LIKE FISHES OF THE GENUS A.mblyceps BLYTH. By SUNDER LAL RORA, D. Se., F.A.B.B., F.R.S.E.: Assistant Superin­ tendent, Zoological Survey of India, Oalcutta. OONTENTS. PAGE. Definition • • • • 607 History • 608 Relationships 610 Habita.t and Bionomics • 612 Aquatic Respiration 614 Probable Evolution 616 Description of Amhlycepa mangois (H. B.) 616 Addendum: A Short Description of the Siamese Form 619 DEFINITION. The genus Amblyceps comprises small " Cobitis-like SilU!'Qid " fishes in which the body is long, slender and compressed except in the region in front of the ventrals where the lower surfaoe is flattened. The head is broad and depressed with the anterior end somewhat rounded or truncate. The head is greatly swollen in the region of the opercular chambers. The eyes are small, superior and subcutaneou~. The nos­ trils are situated close together; the anterior nostril is rounded and its edges are raised to form a short tube; the posterior nostril is. oval ahd is surrounded by a cutaneous flap which is produced into a proniinent nasal barbel anteriorly. The two nostrils appear to be separated ·sup.er­ ficially. by the nasal barbel. The mouth is wide and tran~verse. The jaws are sub equal, either the upper or the lower p.eing slightly IQngel than the other. The lips are continuous and surround the gape of the mouth; both the lips are slightly fimbriated and are thrown into a fold at each corner of. the mouth (fig. la). The maxillary barbels are slightly shorter tha~ the head and are provided with broad bases.
    [Show full text]
  • Strategies for Conservation and Restoration of Freshwater Fish Species in Korea
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 29-37, July 2009 Received : April 22, 2009 ISSN: 1225-8598 Revised : June 6, 2009 Accepted : June 20, 2009 Strategies for Conservation and Restoration of Freshwater Fish Species in Korea By Eon-Jong Kang*, In-Chul Bang1 and Hyun Yang2 Inland Aquaculture Research Center, National Fisheries Research and Development Institute, Busan 619-902, Korea 1Department of Marine Biotechnology, Soonchunhyang University, Asan 336-745, Korea 2Institute of Biodiversity Research, Jeonju 561-211, Korea ABSTRACT The tiny fragment of freshwater body is providing home for huge biodiversity and resour- ces for the existence of human. The competing demand for freshwater have been increased rapidly and it caused the declination of biodiversity in recent decades. Unlike the natural process of extinction in gradual progress, the current species extinction is accelerated by human activity. As a result many fish species are already extinct or alive only in captivity in the world and about fifty eight animal species are in endangered in Korea including eighteen freshwater species. Conservation of biodiversity is the pro- cess by which the prevention of loss or damage is attained, and is often associated with management of the natural environment. The practical action is classified into in-situ, or ex-situ depending on the location of the conservation effort. Recovery means the process by which the status of endangerment is improved to persist in the wild by re-introduction of species from ex-situ conservation population into nature or translocation of some population. However there are a lot of restrictions to complete it and successful results are known very rare in case.
    [Show full text]
  • Potential Effects of Dam Cascade on Fish
    Rev Fish Biol Fisheries DOI 10.1007/s11160-015-9395-9 ORIGINAL RESEARCH Potential effects of dam cascade on fish: lessons from the Yangtze River Fei Cheng . Wei Li . Leandro Castello . Brian R. Murphy . Songguang Xie Received: 23 October 2014 / Accepted: 13 July 2015 Ó Springer International Publishing Switzerland 2015 Abstract Construction of hydroelectric dams affect Corieus guichenoti will have a high risk of extinction river ecosystems, fish diversity, and fisheries yields. due to the combined effects of impoundment and However, there are no studies assessing the combined blocking. Modification of the flow regime will effects on fish caused by several adjacent dams and adversely affect the recruitment of 26 species that their reservoirs, as in a ‘dam cascade’. This study produce drifting eggs. The start of annual spawning for predicts the potential effects that a cascade of ten dams 13 fishes will be postponed by more than 1 month, and currently under construction in the upper Yangtze fish spawning and growth opportunities will be River in China will have on local fishes, and uses such reduced due to low water temperatures associated predictions to assess the effectiveness of possible fish with hypolimnetic discharges. Combined dam effects conservation measures. We found that the dam will further reduce the likelihood of successful cascade will have serious combined effects on fishes recruitment of some endangered species, such as mainly due to impoundment, habitat fragmentation Acipenser dabryanus and Psephurus gladius. Three and blocking, flow regime modification, and hypolim- countermeasures hold promise to mitigate the near- netic discharges. The impoundments will cause loss of term effects of the dam cascade, including preserva- critical habitats for 46 endemic species.
    [Show full text]
  • Beta Diversity Patterns of Fish and Conservation Implications in The
    A peer-reviewed open-access journal ZooKeys 817: 73–93 (2019)Beta diversity patterns of fish and conservation implications in... 73 doi: 10.3897/zookeys.817.29337 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China Jiajun Qin1,*, Xiongjun Liu2,3,*, Yang Xu1, Xiaoping Wu1,2,3, Shan Ouyang1 1 School of Life Sciences, Nanchang University, Nanchang 330031, China 2 Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engi- neering, Nanchang University, Nanchang 330031, China 3 School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China Corresponding author: Shan Ouyang ([email protected]); Xiaoping Wu ([email protected]) Academic editor: M.E. Bichuette | Received 27 August 2018 | Accepted 20 December 2018 | Published 15 January 2019 http://zoobank.org/9691CDA3-F24B-4CE6-BBE9-88195385A2E3 Citation: Qin J, Liu X, Xu Y, Wu X, Ouyang S (2019) Beta diversity patterns of fish and conservation implications in the Luoxiao Mountains, China. ZooKeys 817: 73–93. https://doi.org/10.3897/zookeys.817.29337 Abstract The Luoxiao Mountains play an important role in maintaining and supplementing the fish diversity of the Yangtze River Basin, which is also a biodiversity hotspot in China. However, fish biodiversity has declined rapidly in this area as the result of human activities and the consequent environmental changes. Beta diversity was a key concept for understanding the ecosystem function and biodiversity conservation. Beta diversity patterns are evaluated and important information provided for protection and management of fish biodiversity in the Luoxiao Mountains.
    [Show full text]
  • Homoplasies, Consistency Index and the Complexity of Morphological Evolution: Catfishes As a Case Study for General Discussions on Phylogeny and Macroevolution
    Int. J. Morphol., 25(4):831-837, 2007. Homoplasies, Consistency Index and the Complexity of Morphological Evolution: Catfishes as a Case Study for General Discussions on Phylogeny and Macroevolution Homoplasias, Índice de Consistencia y la Complejidad de la Evolución Morfológica: Peces Gato como un Estudio de Caso para Discusiones Generales en Filogenia y Macroevolución *,** Rui Diogo DIOGO, R. Homoplasies, consistency index and the complexity of morphological evolution: Catfishes as a case study for general discussions on phylogeny and macroevolution. Int. J. Morphol., 25(4):831-837, 2007. SUMMARY: Catfishes constitute a highly diversified, cosmopolitan group that represents about one third of all freshwater fishes and is one of the most diverse Vertebrate taxa. The detailed study of the Siluriformes can, thus, provide useful data, and illustrative examples, for broader discussions on general phylogeny and macroevolution. In this short note I briefly expose how the study of this remarkably diverse group of fishes reveals an example of highly homoplasic, complex 'mosaic' morphological evolution. KEY WORDS: Catfishes; Homoplasies; Morphological macroevolution; Phylogeny; Siluriformes; Teleostei. INTRODUCTION The catfishes, or Siluriformes, found in North, Cen- and diversity surely resulting from several homoplasic tral and South America, Africa, Europe, Asia and Australia, events. This was precisely the main reason to choose this with fossils inclusively found in Antarctica, constitute a amazing group of fishes as a case study for discussing gene- highly diversified, cosmopolitan group, which, with more ral topics on phylogeny and macroevolution. But the exam than 2700 species, represents about one third of all freshwater of more and more morphological phylogenetic characters in fishes and is one of the most diverse Vertebrate taxa (e.g.
    [Show full text]
  • A New Species of Torrent Catfish, Liobagrus Hyeongsanensis (Teleostei: Siluriformes: Amblycipitidae), from Korea
    Zootaxa 4007 (1): 267–275 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4007.2.9 http://zoobank.org/urn:lsid:zoobank.org:pub:60ABECAF-9687-4172-A309-D2222DFEC473 A new species of torrent catfish, Liobagrus hyeongsanensis (Teleostei: Siluriformes: Amblycipitidae), from Korea SU-HWAN KIM1, HYEONG-SU KIM2 & JONG-YOUNG PARK2,3 1National Institute of Ecology, Seocheon 325-813, South Korea 2Department of Biological Sciences, College of Natural Sciences, and Institute for Biodiversity Research, Chonbuk National Univer- sity, Jeonju 561-756, South Korea 3Corresponding author. E-mail: [email protected] Abstract A new species of torrent catfish, Liobargus hyeongsanensis, is described from rivers and tributaries of the southeastern coast of Korea. The new species can be differentiated from its congeners by the following characteristics: a small size with a maximum standard length (SL) of 90 mm; body and fins entirely brownish-yellow without distinct markings; a relatively short pectoral spine (3.7–6.5 % SL); a reduced body-width at pectoral-fin base (15.5–17.9 % SL); 50–54 caudal-fin rays; 6–8 gill rakers; 2–3 (mostly 3) serrations on pectoral fin; 60–110 eggs per gravid female. Key words: Amblycipitidae, Liobagrus hyeongsanensis, New species, Endemic, South Korea Introduction Species of the family Amblycipitidae, which comprises four genera, are found in swift freshwater streams in southern and eastern Asia, ranging from Pakistan across northern India to Malaysia, Korea, and Southern Japan (Chen & Lundberg 1995; Ng & Kottelat 2000; Kim & Park 2002; Wright & Ng 2008).
    [Show full text]
  • Biogeographic History and High-Elevation Adaptations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Ma et al. BMC Evolutionary Biology (2015) 15:233 DOI 10.1186/s12862-015-0516-9 RESEARCH ARTICLE Open Access Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau Xiuhui Ma1,2, Jingliang Kang2,3, Weitao Chen2,3, Chuanjiang Zhou2 and Shunping He2* Abstract Background: The distribution of the Chinese Glyptosternoid catfish is limited to the rivers of the Tibetan Plateau and peripheral regions, especially the drainage areas of southeastern Tibet. Therefore, Glyptosternoid fishes are ideal for reconstructing the geological history of the southeastern Tibet drainage patterns and mitochondrial genetic adaptions to high elevations. Results: Our phylogenetic results support the monophyly of the Sisoridae and the Glyptosternoid fishes. The reconstructed ancestral geographical distribution suggests that the ancestral Glyptosternoids was widely distributed throughout the Brahmaputra drainage in the eastern Himalayas and Tibetan area during the Late Miocene (c. 5.5 Ma). We found that the Glyptosternoid fishes lineage had a higher ratio of nonsynonymous to synonymous substitutions than those found in non-Glyptosternoids. In addition, ωpss was estimated to be 10.73, which is significantly higher than 1 (p-value 0.0002), in COX1, which indicates positive selection in the common ancestral branch of Glyptosternoid fishes in China. We also found other signatures of positive selection in the branch of specialized species. These results imply mitochondrial genetic adaptation to high elevations in the Glyptosternoids. Conclusions: We reconstructed a possible scenario for the southeastern Tibetan drainage patterns based on the adaptive geographical distribution of the Chinese Glyptosternoids in this drainage.
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]
  • 5Th Indo-Pacific Fish Conference
    )tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope.
    [Show full text]
  • Siluriformes: Amblycipitidae) from Korea
    345 Ichthyol. Explor. Freshwaters, Vol. 21, No. 4, pp. 345-352, 4 figs., 2 tabs., December 2010 © 2010 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Liobagrus somjinensis, a new species of torrent catfish (Siluriformes: Amblycipitidae) from Korea Jong-Young Park* and Su-Hwan Kim* Liobargus somjinensis, new species, is described from rivers and tributaries of the western and southern coasts of Korea, and Geogeum Island. The new species can be differentiated from its congeners by the following characters: a broad yellowish, vertical, crescent-shaped band in the middle of the caudal fin; deep black coloration on the outer margin of the dorsal, anal, and caudal fins; a relatively long dorsal spine (7.3-12.4 % SL) and outer mental barbel (15.3-21.6 % SL), and a short distance from dorsal-fin insertion to adipose-fin origin (13.5-22.0 % SL). Introduction L. mediadiposalis and the type I is a new species, L. somjinensis. The family Amblycipitidae is distributed in southern and eastern Asia, ranging from Pakistan across northern India to Malaysia, Korea, and Material and methods Southern Japan (Chen & Lundberg, 1995; Ng & Kottelat, 2000; Kim & Park, 2002; Wright & Ng, Counts and measurements were taken following 2008). Only three species are known from the the procedures of Hubbs & Lagler (1964) and Korean Peninsula, all endemic: Liobagrus ander- Wright & Ng (2008). Fin spines and soft rays were soni Regan, 1908, L. mediadiposalis Mori, 1936 and counted from radiographs, and the last two ele- L. obesus Son, Kim & Choo, 1987. Son (1987) sug- ments of the dorsal and anal fins were counted gested that two different forms of L.
    [Show full text]
  • Karyotype Analysis of an Endemic Korean Torrent Catfish Liobagrus Hyeongsanensis (Siluriformes: Amblycipitidae)
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 29, No. 2, 89-93, June 2017 Received: May 25, 2017 ISSN: 1225-8598 (Print), 2288-3371 (Online) Revised: June 12, 2017 Accepted: June 15, 2017 Karyotype Analysis of an Endemic Korean Torrent Catfish Liobagrus hyeongsanensis (Siluriformes: Amblycipitidae) By Yun Jeong Cho and Jong Young Park* Department of Biological Sciences and Institute for Biodiversity Research, College of Natural Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea ABSTRACT For the karyotype analysis of Liobagrus hyeongsanensis, an endemic Korean torrent catfish, ten females and five males were used from Yangbuk-myeon, Gyeongju-si, Gyeongsangbuk- do, Korea. The diploid number of chromosomes was 42, and its karyotype consisted of 30 metacentrics and 12 submetacentrics; 84 FN (fundamental number), with having no polyploidy and sexual dimorphism. The chromosome number was the same as other closely-related species, L. mediadiposalis and L. somjinensis, but their karyotypes showed a clear difference by species. Such result may be related to chromosomal rearrangements by Robertsonian rearrangement with geographical isolation. Key words: Liobagrus hyeongsanensis, chromosome, karyotype, Korea INTRODUCTION Rivers, and Daejongcheon Stream (Kim, 2013). The karyotype analysis in teleost plays an important The genus Liobagrus belonging to the family Am- role in taxonomic and genetic studies (Gold et al., 1990), blycipitidae includes currently 13 species in the world showing its own unique genetic trait that has a specific (Nelson et al., 2016), of which five endemic species are pattern of chromosomal rearrangements within different reported in the Korean Peninsula: L. andersoni (Regan, evolutionary lines (Chiarelli and Capanna, 1973). The or- 1908), L. obesus (Son et al., 1987), L.
    [Show full text]
  • Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]