The Art-Science Marriage, from Quarrel to Understanding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FRACTAL REACTOR: an ALTERNATIVE NUCLEAR FUSION SYSTEM BASED on NATURE's GEOMETRY Todd Lael Siler Psi-Phi Communications, LLC 4950 S
TR0700405 13th International Conference on Emerging Nuclear Energy Systems June 03-08, 2007, İstanbul, Türkiye FRACTAL REACTOR: AN ALTERNATIVE NUCLEAR FUSION SYSTEM BASED ON NATURE'S GEOMETRY Todd Lael Siler Psi-Phi Communications, LLC 4950 S. Yosemite Street, F2-325 Greenwood Village, Colorado 80111 USA E-mai 1: [email protected] ABSTRACTS The author presents his concept of the Fractal Reactor, which explores the possibility of building a plasma fusion power reactor based on the real geometry of nature [fractals], rather than the virtual geometry that Euclid postulated around 330 BC(1); nearly every architect of our plasma fusion devices has been influenced by his three-dimensional geometry. The idealized points, lines, planes, and spheres of this classical geometry continue to be used to represent the natural world and to describe the properties of all geometrical objects, even though they neither accurately nor fully convey nature's structures and processes. (2) The Fractal Reactor concept contrasts the current containment mechanisms of both magnetic and inertial containment systems for confining and heating plasmas. All of these systems are based on Euclidean geometry and use geometrical designs that, ultimately, are inconsistent with the Non-Euclidean geometry and irregular, fractal forms of nature (j). The author explores his premise that a controlled, thermonuclear fusion energy system might be more effective if it more closely embodies the physics of a star. This exploratory concept delves into Siler's hypothesis that nature's star "fractal reactors" are composed of fractal forms and dimensions that are statistically self-similar, (4) as shown in Figures 1 & 2. -
Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension. -
Logic and Artificial Intelligence
Logic and Artificial Intelligence: Divorced,StillMarried,Separated...?∗ Selmer Bringsjord//David A. Ferrucci February 13, 1998 Abstract Though it’s difficult to agree on the exact date of their union, logic and artificial intelligence (AI) were married by the late 1950s, and, at least during their honeymoon, were happily united. What connubial permu- tation do logic and AI find themselves in now? Are they still (happily) married? Are they divorced? Or are they only separated, both still keep- ing alive the promise of a future in which the old magic is rekindled? This paper is an attempt to answer these questions via a review of six books. Encapsulated, our answer is that (i) logic and AI, despite tabloidish re- ports to the contrary, still enjoy matrimonial bliss, and (ii) only their future robotic offspring (as opposed to the children of connectionist AI) will mark real progress in the attempt to understand cognition. 1 The Logic–AI Marriage Though it’s difficult to agree on the exact date of their union, logic and artificial intelligence (AI) were married by the late 1950s, and, at least during their honeymoon, were happily married. But what connubial permutation do logic and AI find themselves in now? Are they still (happily) married? Are they divorced? Or are they only separated, both still keeping alive the promise of a future in which the old magic is rekindled? This paper is an attempt to answer these questions via a review of the following six books: • Ronald J. Brachman, Hector J. Levesque, and Raymond Reiter, eds., Knowledge Representation, Special Issues of Artificial Intelligence: An International Journal, Cambridge, MA: MIT Press, 1992, 408 pp., $29.00 (paper), ISBN 0-262-52168-7. -
“GOLDEN ROOT SYMMETRIES of GEOMETRIC FORMS” By
“GOLDEN ROOT SYMMETRIES OF GEOMETRIC FORMS” By: Eur Ing Panagiotis Ch. Stefanides BSc(Eng)Lon(Hons) CEng MIET MSc(Eng)Ath MΤCG SYMMETRY FESTIVAL 2006 BUDAPEST HUNGARY Published Athens 2010 - Heliotropio Stefanides Eur Ing Panagiotis Stefanides 2 Eur Ing Panagiotis Stefanides 3 GOLDEN ROOT SYMMETRIES OF GEOMETRIC FORMS” By: Eur Ing Panagiotis Ch. Stefanides BSc(Eng)Lon(Hons) CEng MIET MSc(Eng)Ath MΤCG Eur Ing Panagiotis Stefanides 4 © Copyright 2010 P. Stefanides 8, Alonion st., Kifissia, Athens, 145 62 Greece “GOLDEN ROOT SYMMETRIES OF GEOMETRIC FORMS” Published Athens 2010 - Heliotropio Stefanides Eur Ing Panagiotis Stefanides 5 To My Wife Mary, and my Daughter Natalia, for their patience and constant support, et Amorem, Qui Mundos Unit. Published Athens 2010 – Heliotropio Stefanides © Copyright 1986-2010 P. Stefanides Eur Ing Panagiotis Stefanides 6 ACKNOWLEDGEMENTS I thank all those colleagues, fellow engineers friends, parental family and relations, who assisted me in any way, together with their valued suggestions, for this work to be presented to the SYMMETRY FESTIVAL 2006, BUDAPEST HUNGARY, where my special thanks goes to the Chairman of this International Conference, Professor György Darvas, who invited me, and gave me the chance for my ideas to be disseminated internationally, and also I thank Painter Takis Parlavantzas, member of the Hellenic Society of Ekastic Arts, for inviting me to present a paper at the “Arts Symposium” in Xanthe [Demokriteio University -22-24 Nov 1991] under the title “Geometric Concepts in Plato, Related to Art”. Similarly I thank the Hellenic Mathematical Society for giving me the floor [2-4 Mar. 1989] to present my novel paper “The Most Beautiful Triangle- Plato’s Timaeus” at the conference “ History and Philosophy of Classical Greek Mathematics”[ Professor Vassilis Karasmanis] and also the Hellenic Physicists’ Society,[ Mrs D. -
ERGOAI Reasoner User's Manual
ERGOAI Reasoner User’s Manual Version 2.0 (Myia) Edited by Michael Kifer Coherent Knowledge October 2018 Portions Copyright © 2013–2018 Coherent Knowledge CONTENTS Contents 1 Introduction 1 2 Installation 1 3 Running ERGO 2 4 ERGO Shell Commands 3 5 F-logic and ERGO by Example 10 6 Main Syntactic Elements of ERGO 10 7 Basic ERGO Syntax 13 7.1 F-logic Vocabulary ..................................... 13 7.2 Symbols, Strings, and Comments ............................. 18 7.3 Operators .......................................... 21 7.4 Logical Expressions ..................................... 23 7.5 Arithmetic (and related) Expressions ........................... 23 7.6 Quasi-constants and Quasi-variables ........................... 30 7.7 Synonyms .......................................... 31 7.8 Reserved Symbols ..................................... 31 8 Path Expressions 31 9 Set Notation 33 10 Typed Variables 34 11 Truth Values and Object Values 36 12 Boolean Methods 38 Portions Copyright © 2013–2018 Coherent Knowledge i CONTENTS 12.1 Boolean Signatures ..................................... 39 13 Skolem Symbols 39 14 Testing Meta-properties of Symbols and Variables 46 15 Lists, Sets, Ranges. The Operators \in, \subset, \sublist 50 16 Multifile Knowledge Bases 51 16.1 ERGO Modules ....................................... 52 16.2 Calling Methods and Predicates Defined in User Modules ............... 53 16.3 Finding the Current Module Name ............................ 55 16.4 Finding the Module That Invoked A Rule ........................ 55 16.5 Loading Files into User Modules ............................. 55 16.6 Adding Rule Bases to Existing Modules ......................... 58 16.7 Module References in Rule Heads ............................. 59 16.8 Calling Prolog Subgoals from ERGO ........................... 60 16.9 Calling ERGO from Prolog ................................. 62 16.9.1 Importing ERGO Predicates into Prolog ..................... 62 16.9.2 Passing Arbitrary Queries to ERGO ...................... -
Math 1090 Part Two: Predicate (First-Order) Logic
Math 1090 Part two: Predicate (First-Order) Logic Saeed Ghasemi York University 5th July 2018 Saeed Ghasemi (York University) Math 1090 5th July 2018 1 / 95 Question. Is propositional logic rich enough to do mathematics and computer science? The answer is \Absolutely not"! Mathematics and computer science deals with structures like sets, strings, numbers, matrices, trees, graphs, programs, Turing machines and many others. The propositional logic is not rich enough to deal with this structures. For example, try expressing the statements \there is a rational number strictly between two given rational numbers" or \every natural number has a unique prime factorization". We cannot even express these statements in the Boolean Logic, let alone proving them! Saeed Ghasemi (York University) Math 1090 5th July 2018 2 / 95 Number Theory-Peano's Arithmetic In order to express formulas in number theory: We need to be able to refer to numbers, N = f1; 2; 3;::: g as variables. we need to have variable symbols that would refer to numbers, like n; m; n0;::: . Let's call them \object variables". We need to be able to say when two numbers are equal, that's why we need a symbol \=" for the equality between the variable objects. We need to be able to say expressions like \for all natural numbers ...". So let's have a symbol 8, which says \for all". We need a special constant denoting 0. We also need to be able to add and multiply numbers. So lets have function + : N × N ! N and × : N × N ! N for addition and multiplication, respectively (we say these functions have arity2 because they take two inputs, so the function f (x; y; z) = ::: has arity 3). -
New and Forthcoming Books in 2020 Now Available on Worldscinet
View this flyer online at http://bit.ly/ws-newmathematics2020 New and Forthcoming books in 2020 Now available on WorldSciNet Essential Textbooks in Physics How to Derive a Formula Volume 1: Basic Analytical Skills and Methods for Physical Scientists by Alexei A Kornyshev & Dominic O’Lee (Imperial College London, UK) “In this book, the authors teach the art of physical applied mathematics at the advanced undergraduate level. In contrast to traditional mathematics books, formal derivations and theorems are replaced by worked examples with intuitive solutions and approximations, given some familiarity with physics and chemistry. In this way, the book covers an Fundamental Concepts in A Course in Game Theory ambitious range of topics, such as vector calculus, differential and integral equations, Modern Analysis by Thomas S Ferguson (University of California, Los Angeles, USA) linear algebra, probability and statistics, An Introduction to Nonlinear Analysis functions of complex variables, scaling and 2nd Edition This book presents various mathematical models dimensional analysis. Systematic methods by Vagn Lundsgaard Hansen of games and study the phenomena that arise. of asymptotic approximation are presented (Technical University of Denmark, Denmark) In some cases, we will be able to suggest in simple, practical terms, showing the With: Poul G Hjorth what courses of action should be taken by the value of analyzing ‘limiting cases’. Unlike players. In others, we hope simply to be able to most science or engineering textbooks, the In this book, students from both pure and understand what is happening in order to make physical examples span an equally broad applied subjects are offered an opportunity to better predictions about the future. -
Cabineta Quarterly of Art and Culture
A QUARTERLY OF ART AND CULTURE ISSUE 18 FICTIONAL STATES CABINET US $10 CANADA $15 UK £6 inside this issue THERMIDOR 2005 Sasha Archibald • John Bear • Robert Blackson • William Bryk • Sasha Chavchavadze • Mark Dery • Allen Ezell • Charles Green • Invertebrate • Craig Kalpakjian • Peter Lamborn Wilson • David Levi Strauss • Brian McMullen • Glexis Novoa • George Pendle • Elizabeth Pilliod • Patrick Pound • Bonnie and Roger Riga • Lynne Roberts-Goodwin • Tal Schori • Cecilia Sjöholm • Frances Stark • Michael Taussig • Christopher Turner • Jonathan Ward • Christine Wertheim • Tony Wood • Shea Zellweger cabinet Cabinet is a non-profit 501 (c) (3) magazine published by Immaterial Incorporated. 181 Wyckoff Street Contributions to Cabinet are fully tax-deductible. Our survival is dependent on Brooklyn NY 11217 USA such contributions; please consider supporting us at whatever level you can. tel + 1 718 222 8434 Donations of $25 or more will be acknowledged in the next possible issue. Dona- fax + 1 718 222 3700 tions above $250 will be acknowledged for four issues. Checks should be made email [email protected] out to “Cabinet.” Please mark the envelope, “Rub your eyes before opening.” www.cabinetmagazine.org Cabinet wishes to thank the following visionary foundations and individuals Summer 2005, issue 18 for their support of our activities during 2005. Additionally, we will forever be indebted to the extraordinary contribution of the Flora Family Foundation from Editor-in-chief Sina Najafi 1999 to 2004; without their generous support, this publication would not exist. Senior editor Jeffrey Kastner Thanks also to the Andy Warhol Foundation for the Visual Arts for their two-year Editors Jennifer Liese, Christopher Turner grant in 2003-2004. -
Feature Extraction with Description Logics Functional Subsumption
Functional Subsumption in Feature Description Logic Rodrigo de Salvo Braz1 and Dan Roth2 1 [email protected] 2 [email protected] Department of Computer Science University of Illinois at Urbana-Champaign 201 N. Goodwin Urbana, IL 61801-2302 Summary. Most machine learning algorithms rely on examples represented propo- sitionally as feature vectors. However, most data in real applications is structured and better described by sets of objects with attributes and relations between them. Typically, ad-hoc methods have been used to convert such data to feature vectors, taking, in many cases, a significant amount of the computation. Propositionaliza- tion becomes more principled if generating features from structured data is done using a formal, domain independent language that describes feature types to be extracted. This language must have limited expressivity in order to be useful while some inference procedures on it are still tractable. In this chapter we present Feature Description Logic (FDL), proposed by Cumby & Roth, where feature extraction is viewed as an inference process (subsumption). We also present an extension to FDL we call Functional FDL. FDL is ultimately based on the unification of object attributes and relations between objects in or- der to detect feature types in examples. Functional subsumption provides further abstraction by using unification modulo a Boolean function representing similar- ity between attributes and relations. This greatly improves flexibility in practical situations by accomodating variations in attributes values and relation names, in- corporating background knowledge (e.g., typos, number and gender, synomyms etc). We define the semantics of Functional subsumption and how to adapt the regular subsumption algorithm for implementing it. -
Let the Mirrors Do the Thinking
BRIDGES Mathematical Connections in Art, Music, and Science Let the Mirrors Do the Thinking Glenn Clark Shea Zellweger Department of Mathematics Department of Psychology Mount Union College Mount Union College Alliance, Ohio 44601 Alliance, Ohio 4460 I 1. Introduction Our story begins with a simple example. Suppose that someone asked you to keep a record of your thoughts, exactly, and in terms of the symbols given, when you are making an effort to multiply XVI times LXIV. Also suppose that, refusing to give up, you finally arrive at the right answer, which happens to be MXXIV. We are sure that you would have had a much easier time of it, to solve this problem, if you would have found that 16 times 64 equals 1024. This example not only looks at what we think and what we write. It also looks at the mental tools, the signs and symbols, that we are using when that thinking and that writing is taking place. How we got these mental tools is a long story, one that includes new developments today. What follows will run a replay of what happened when Europe took several centuries to go from MXXIV to 1024. This replay in not for numbers: it is for logic. Modem logic starts in the middle 1800s and with George Boole. This means that we have had only about 150 years to establish the symbols we now use for symbolic logic. These symbols leave a lot to be desired. We hope thatwe can draw you into taking a look at a lesson in lazy logic. -
Systems of Proportion in Design and Architecture and Their Relationship to Dynamical Systems Theory
BRIDGES Mathematical Connections in Art, Music, and Science Systems of Proportion in Design and Architecture and their Relationship to Dynamical Systems Theory Jay Kappraff Mathematics Department New Jersey Institute of Technology Newark, NJ 07102. [email protected] Abstract A general theory of proportion is presented and applied to proportional systems based on the golden mean, root 2, and root 3. These proportions are shown to be related to regular star polygons and to the law of repetition of ratios. The additive properties of these proportions are presented in terms of both irrational and integer series. The geometrical and number theoretic properties of the root 3 system are focused on since this system has not been previously reported in the literature. An architectural Rotunda is presented. The relationship between systems of proportion and the symbolic dynamics of chaos theory is presented. 1. Introduction Architecture and design have always involved a search for general laws of beauty. Is beauty in the eye of the beholder or does it come about through intrinsic properties of space? Three general principles: repetition, harmony, and variety lie at the basis of beautiful designs. Repetition is achieved by using a system that provides a' set of proportions that are repeated in a design or building at different scales. Harmony is achieved through a system that provides a small set of lengths or modules with many additive properties which enables the whole to be created as the sum of its parts while remaining entirely within the system. Variety is provided by a system that provides a sufficient degree of versatility in its ability to tile the plane with geometric figures. -
Abstract and Root for Your Breast If She's Hungry
New Approach to Computational Cognition and Predicative Competence Rodolfo A. Fiorini Department of Electronics, Information and Bioengineering, Politecnico di Milano University, Italy [email protected] Abstract and root for your breast if she's hungry. Not only, babies can smell their mom from as far away as one to two feet. If you Artificial General Intelligence needs fresh methods hold the baby and engage the baby with your eyes, while with cognitive architectures and philosophy of telling the mother to watch what happens, the baby will al- mind. In this context, predicative competence, nat- ways turn her head after a few seconds and looks towards ural language processing, and cognitive approaches the mother. The baby can find her mother simply by smell- can play a fundamental role in developing a new ing her. Babies can focus their eyes only about eight to 10 generation of user-friendly, more autonomous but inches, but they can smell from a much further distance. still safe systems. Understanding this deep layer of Familiar and identifiable odors are better remembered than thought is vital to develop highly competitive, reli- are unfamiliar and less identifiable odors [Rabin and Cain, able and effective cognitive robot and brain- 1984; Schab and Crowder, 1995]. Baby rotates her head in inspired system. We present a new approach to the direction related to the highest sensed level of her mom's computational cognition and predicative compe- scent. tence. In the mammalian brain, the development of precise neu- ral circuits is initially directed by intrinsic genetic pro- 1 Introduction gramming and subsequently refined by neural activity [Katz Newly born babies are born equipped to respond to pleasant and Shatz, 1996; Zhang and Poo, 2001; Kirby et al., 2013].