Stream Cipher the Operation of the Keystream Generator in A5/1, A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Failures of Secret-Key Cryptography D
Failures of secret-key cryptography D. J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven http://xkcd.com/538/ 2011 Grigg{Gutmann: In the past 15 years \no one ever lost money to an attack on a properly designed cryptosystem (meaning one that didn't use homebrew crypto or toy keys) in the Internet or commercial worlds". 2011 Grigg{Gutmann: In the past 15 years \no one ever lost money to an attack on a properly designed cryptosystem (meaning one that didn't use homebrew crypto or toy keys) in the Internet or commercial worlds". 2002 Shamir:\Cryptography is usually bypassed. I am not aware of any major world-class security system employing cryptography in which the hackers penetrated the system by actually going through the cryptanalysis." Do these people mean that it's actually infeasible to break real-world crypto? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Or are they simply wrong: real-world crypto is breakable; is in fact being broken; is one of many ongoing disaster areas in security? Do these people mean that it's actually infeasible to break real-world crypto? Or do they mean that breaks are feasible but still not worthwhile for the attackers? Or are they simply wrong: real-world crypto is breakable; is in fact being broken; is one of many ongoing disaster areas in security? Let's look at some examples. -
LNCS 9065, Pp
Combined Cache Timing Attacks and Template Attacks on Stream Cipher MUGI Shaoyu Du1,4, , Zhenqi Li1, Bin Zhang1,2, and Dongdai Lin3 1 Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 4 University of Chinese Academy of Sciences, Beijing, China du [email protected] Abstract. The stream cipher MUGI was proposed by Hitachi, Ltd. in 2002 and it was specified as ISO/IEC 18033-4 for keystream genera- tion. Assuming that noise-free cache timing measurements are possible, we give the cryptanalysis of MUGI under the cache attack model. Our simulation results show that we can reduce the computation complexity of recovering all the 1216-bits internal state of MUGI to about O(276) when it is implemented in processors with 64-byte cache line. The at- tack reveals some new inherent weaknesses of MUGI’s structure. The weaknesses can also be used to conduct a noiseless template attack of O(260.51 ) computation complexity to restore the state of MUGI. And then combining these two attacks we can conduct a key-recovery attack on MUGI with about O(230) computation complexity. To the best of our knowledge, it is the first time that the analysis of cache timing attacks and template attacks are applied to full version of MUGI and that these two classes of attacks are combined to attack some cipher. -
Joint Force Quarterly 97
Issue 97, 2nd Quarter 2020 JOINT FORCE QUARTERLY Broadening Traditional Domains Commercial Satellites and National Security Ulysses S. Grant and the U.S. Navy ISSUE NINETY-SEVEN, 2 ISSUE NINETY-SEVEN, ND QUARTER 2020 Joint Force Quarterly Founded in 1993 • Vol. 97, 2nd Quarter 2020 https://ndupress.ndu.edu GEN Mark A. Milley, USA, Publisher VADM Frederick J. Roegge, USN, President, NDU Editor in Chief Col William T. Eliason, USAF (Ret.), Ph.D. Executive Editor Jeffrey D. Smotherman, Ph.D. Production Editor John J. Church, D.M.A. Internet Publications Editor Joanna E. Seich Copyeditor Andrea L. Connell Associate Editor Jack Godwin, Ph.D. Book Review Editor Brett Swaney Art Director Marco Marchegiani, U.S. Government Publishing Office Advisory Committee Ambassador Erica Barks-Ruggles/College of International Security Affairs; RDML Shoshana S. Chatfield, USN/U.S. Naval War College; Col Thomas J. Gordon, USMC/Marine Corps Command and Staff College; MG Lewis G. Irwin, USAR/Joint Forces Staff College; MG John S. Kem, USA/U.S. Army War College; Cassandra C. Lewis, Ph.D./College of Information and Cyberspace; LTG Michael D. Lundy, USA/U.S. Army Command and General Staff College; LtGen Daniel J. O’Donohue, USMC/The Joint Staff; Brig Gen Evan L. Pettus, USAF/Air Command and Staff College; RDML Cedric E. Pringle, USN/National War College; Brig Gen Kyle W. Robinson, USAF/Dwight D. Eisenhower School for National Security and Resource Strategy; Brig Gen Jeremy T. Sloane, USAF/Air War College; Col Blair J. Sokol, USMC/Marine Corps War College; Lt Gen Glen D. VanHerck, USAF/The Joint Staff Editorial Board Richard K. -
Pseudo-Random Bit Generators Based on Linear-Feedback Shift Registers in a Programmable Device
184 Measurement Automation Monitoring, Jun. 2016, no. 06, vol. 62, ISSN 2450-2855 Maciej PAROL, Paweł DĄBAL, Ryszard SZPLET MILITARY UNIVERSITY OF TECHNOLOGY, FACULTY OF ELECTRONICS 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland Pseudo-random bit generators based on linear-feedback shift registers in a programmable device Abstract known how to construct LFSRs with the maximum period since they correspond to primitive polynomials over the binary field F2. We present the results of comparative study on three pseudo-random bit The N-bit length LFSR with a well-chosen feedback function generators (PRBG) based on various use of linear-feedback shift registers gives the sequence of maximal period (LFSR). The project was focused on implementation and tests of three such PRBG in programmable device Spartan 6, Xilinx. Tests of the designed PRBGs were performed with the use of standard statistical tests =2 . (1) NIST SP800-22. For example, an eight bit LFSR will have 255 states. LFSRs Keywords: pseudo-random bit generators, linear-feedback shift register, generators have good statistical properties, however they have low programmable device. linear complexity equal to their order (only N in considered case), which is the main drawback of primitive LFSRs. They can 1. Introduction be easily reconstructed having a short output segment of length just 2N [4]. In addition, they are very easy for implementation in In dynamically developed domains of information technology programmable devices. Figure 1 presents the structure of a simple and telecommunication, sequences of random generated bits are LFSR-based generator. still more and more required and used. There are two common sources of random bits, i.e. -
Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng
Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng 1 Introduction – Chris Eng _ Director of Security Services, Veracode _ Former occupations . 2000-2006: Senior Consulting Services Technical Lead with Symantec Professional Services (@stake up until October 2004) . 1998-2000: US Department of Defense _ Primary areas of expertise . Web Application Penetration Testing . Network Penetration Testing . Product (COTS) Penetration Testing . Exploit Development (well, a long time ago...) _ Lead developer for @stake’s now-extinct WebProxy tool 2 Assumptions _ This talk is aimed primarily at penetration testers but should also be useful for developers to understand how your application might be vulnerable _ Assumes basic understanding of cryptographic terms but requires no understanding of the underlying math, etc. 3 Agenda 1 Problem Statement 2 Crypto Refresher 3 Analysis Techniques 4 Case Studies 5 Q & A 4 Problem Statement 5 Problem Statement _ What do you do when you encounter unknown data in web applications? . Cookies . Hidden fields . GET/POST parameters _ How can you tell if something is encrypted or trivially encoded? _ How much do I really have to know about cryptography in order to exploit implementation weaknesses? 6 Goals _ Understand some basic techniques for analyzing and breaking down unknown data _ Understand and recognize characteristics of bad crypto implementations _ Apply techniques to real-world penetration tests 7 Crypto Refresher 8 Types of Ciphers _ Block Cipher . Operates on fixed-length groups of bits, called blocks . Block sizes vary depending on the algorithm (most algorithms support several different block sizes) . Several different modes of operation for encrypting messages longer than the basic block size . -
Key Differentiation Attacks on Stream Ciphers
Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register. -
Middleware in Action 2007
Technology Assessment from Ken North Computing, LLC Middleware in Action Industrial Strength Data Access May 2007 Middleware in Action: Industrial Strength Data Access Table of Contents 1.0 Introduction ............................................................................................................. 2 Mature Technology .........................................................................................................3 Scalability, Interoperability, High Availability ...................................................................5 Components, XML and Services-Oriented Architecture..................................................6 Best-of-Breed Middleware...............................................................................................7 Pay Now or Pay Later .....................................................................................................7 2.0 Architectures for Distributed Computing.................................................................. 8 2.1 Leveraging Infrastructure ........................................................................................ 8 2.2 Multi-Tier, N-Tier Architecture ................................................................................. 9 2.3 Persistence, Client-Server Databases, Distributed Data ....................................... 10 Client-Server SQL Processing ......................................................................................10 Client Libraries .............................................................................................................. -
Algebraic Attacks on SOBER-T32 and SOBER-T16 Without Stuttering
Algebraic Attacks on SOBER-t32 and SOBER-t16 without stuttering Joo Yeon Cho and Josef Pieprzyk? Center for Advanced Computing – Algorithms and Cryptography, Department of Computing, Macquarie University, NSW, Australia, 2109 {jcho,josef}@ics.mq.edu.au Abstract. This paper presents algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. For unstuttered SOBER-t32, two differ- ent attacks are implemented. In the first attack, we obtain multivariate equations of degree 10. Then, an algebraic attack is developed using a collection of output bits whose relation to the initial state of the LFSR can be described by low-degree equations. The resulting system of equa- tions contains 269 equations and monomials, which can be solved using the Gaussian elimination with the complexity of 2196.5. For the second attack, we build a multivariate equation of degree 14. We focus on the property of the equation that the monomials which are combined with output bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a system of linear equations and the initial states of the LFSR can be recovered. The complexity of attack is around O(2100) with 292 keystream observations. The second algebraic attack is applica- ble to SOBER-t16 without stuttering. The attack takes around O(285) CPU clocks with 278 keystream observations. Keywords : Algebraic attack, stream ciphers, linearization, NESSIE, SOBER-t32, SOBER-t16, modular addition, multivariate equations 1 Introduction Stream ciphers are an important class of encryption algorithms. They encrypt individual characters of a plaintext message one at a time, using a stream of pseudorandom bits. -
VMPC-MAC: a Stream Cipher Based Authenticated Encryption Scheme
VMPC-MAC: A Stream Cipher Based Authenticated Encryption Scheme Bartosz Zoltak http://www.vmpcfunction.com [email protected] Abstract. A stream cipher based algorithm for computing Message Au- thentication Codes is described. The algorithm employs the internal state of the underlying cipher to minimize the required additional-to- encryption computational e®ort and maintain general simplicity of the design. The scheme appears to provide proper statistical properties, a comfortable level of resistance against forgery attacks in a chosen ci- phertext attack model and high e±ciency in software implementations. Keywords: Authenticated Encryption, MAC, Stream Cipher, VMPC 1 Introduction In the past few years the interest in message authentication algorithms has been concentrated mostly on modes of operation of block ciphers. Examples of some recent designs include OCB [4], OMAC [7], XCBC [6], EAX [8], CWC [9]. Par- allely a growing interest in stream cipher design can be observed, however along with a relative shortage of dedicated message authentication schemes. Regarding two recent proposals { Helix and Sober-128 stream ciphers with built-in MAC functionality { a powerful attack against the MAC algorithm of Sober-128 [10] and two weaknesses of Helix [12] were presented at FSE'04. This paper gives a proposition of a simple and software-e±cient algorithm for computing Message Authentication Codes for the presented at FSE'04 VMPC Stream Cipher [13]. The proposed scheme was designed to minimize the computational cost of the additional-to-encryption MAC-related operations by employing some data of the internal-state of the underlying cipher. This approach allowed to maintain sim- plicity of the design and achieve good performance in software implementations. -
Fish-Stream Identification Guidebook
of BRITISH COLUMBIA Fish-stream Identification Guidebook Second edition Version 2.1 August 1998 BC Environment Fish-stream Identification Guidebook of BRITISH COLUMBIA Fish-stream Identification Guidebook Second edition Version 2.1 August 1998 Authority Forest Practices Code of British Columbia Act Operational Planning Regulation Canadian Cataloguing in Publication Data Main entry under title: Fish-stream identification guidebook. – 2nd ed. (Forest practices code of British Columbia) ISBN 0-7726-3664-8 1. Fishes – Habitat – British Columbia. 2. River surveys – British Columbia. 3. Forest management – British Columbia. 4. Riparian forests – British Columbia – Management. I. British Columbia. Ministry of Forests. SH177.L63F58 1998 634.9 C98-960250-8 Fish-stream Identification Guidebook Preface This guidebook has been prepared to help forest resource managers plan, prescribe and implement sound forest practices that comply with the Forest Practices Code. Guidebooks are one of the four components of the Forest Practices Code. The others are the Forest Practices Code of British Columbia Act, the regulations, and the standards. The Forest Practices Code of British Columbia Act is the legislative umbrella authorizing the Code’s other components. It enables the Code, establishes mandatory requirements for planning and forest practices, sets enforcement and penalty provisions, and specifies administrative arrangements. The regulations lay out the forest practices that apply province-wide. The chief forester may establish standards, where required, to expand on a regulation. Both regulations and standards are mandatory requirements under the Code. Forest Practices Code guidebooks have been developed to support the regulations, however, only those portions of guidebooks cited in regulation are part of the legislation. -
(SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION
InternationalINTERNATIONAL Journal of Electronics and JOURNAL Communication OF Engineering ELECTRONICS & Technology (IJECET),AND ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) IJECET ISSN 0976 – 6472(Online) Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME: http://www.iaeme.com/IJECET.asp © I A E M E Journal Impact Factor (2015): 7.9817 (Calculated by GISI) www.jifactor.com VHDL MODELING OF THE SRAM MODULE AND STATE MACHINE CONTROLLER (SMC) MODULE OF RC4 STREAM CIPHER ALGORITHM FOR Wi-Fi ENCRYPTION Dr.A.M. Bhavikatti 1 Mallikarjun.Mugali 2 1,2Dept of CSE, BKIT, Bhalki, Karnataka State, India ABSTRACT In this paper, VHDL modeling of the SRAM module and State Machine Controller (SMC) module of RC4 stream cipher algorithm for Wi-Fi encryption is proposed. Various individual modules of Wi-Fi security have been designed, verified functionally using VHDL-simulator. In cryptography RC4 is the most widely used software stream cipher and is used in popular protocols such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its use in new systems. It is especially vulnerable when the beginning of the output key stream is not discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to very insecure cryptosystems such as WEP . Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient in hardware, are less so in software. -
A Practical Attack on Broadcast RC4
A Practical Attack on Broadcast RC4 Itsik Mantin and Adi Shamir Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel. {itsik,shamir}@wisdom.weizmann.ac.il Abstract. RC4is the most widely deployed stream cipher in software applications. In this paper we describe a major statistical weakness in RC4, which makes it trivial to distinguish between short outputs of RC4 and random strings by analyzing their second bytes. This weakness can be used to mount a practical ciphertext-only attack on RC4in some broadcast applications, in which the same plaintext is sent to multiple recipients under different keys. 1 Introduction A large number of stream ciphers were proposed and implemented over the last twenty years. Most of these ciphers were based on various combinations of linear feedback shift registers, which were easy to implement in hardware, but relatively slow in software. In 1987Ron Rivest designed the RC4 stream cipher, which was based on a different and more software friendly paradigm. It was integrated into Microsoft Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL, and many other applications, and has thus become the most widely used software- based stream cipher. In addition, it was chosen to be part of the Cellular Digital Packet Data specification. Its design was kept a trade secret until 1994, when someone anonymously posted its source code to the Cypherpunks mailing list. The correctness of this unofficial description was confirmed by comparing its outputs to those produced by licensed implementations. RC4 has a secret internal state which is a permutation of all the N =2n possible n bits words.