Supplemental Figure S1: Selection of cell-type specific CpGs for fibroblasts (A) Split of total samples (n = 579) into training (n = 409) and validation set (n = 170). (B) Multidimensional scaling (MDS) plot of the validation data (n = 170) shows that samples cluster by cell type. For the analysis, all CpGs shared between the 450K and the EPIC BeadChip were included (except XY ). (C) Chromosomal location and association with corresponding for the selected fibroblast-specific CpGs: lncRNA (RP11-60A8.1) and leucine rich repeats and immunoglobulin like domains 1 (LRIG1). Shown are mean β values from the training data set of neighboring CpGs for the respective cell types. The red lines depict the relevant CpGs. (D) DNAm levels (β values) of the two selected CpGs from the FibroScore in the lung fibrosis dataset GSE63704 (450K BeadChip) (1). Two-sided t-test: *** p < 0.001. (E) DNAm levels (β values) of the two selected CpGs from the FibroScore in the liver cirrhosis dataset GSE60753 (450K BeadChip) (2). Two-sided t-test: : ** p < 0.01, NS = not significant. 1

Supplemental Figure S2: Genomic context of cell-type-specific CpG sites Chromosomal location and association with corresponding genes for the selected cell-type-specific CpGs: 2 (DNM2), IG (MYO1G) encodes for the human minor histocompatibility antigen HA-2, which is only expressed in hematopoietic cells (3), 1 (STMN1), DNA polymerase epsilon catalytic subunit A (POLE), WSC Domain Containing 1 (WSCD1), ArfGAP With GTPase Domain, Repeat And PH Domain 1 (AGAP1) is associated with neurodevelopmental disorders and overexpressed in brain (4), RAS-Associated RAB3A (RAB3A) is also highly expressed in brain (4). Shown are mean β values from the training data set of neighboring CpGs for the respective cell types. The red lines depict the relevant CpGs.

2

Supplemental Figure S3: Comparison of different deconvolution methods (A) In addition to the NNLS model, two alternative deconvolution approaches were considered for in vitro neuron-glia-DNA mixes from dataset GSE41826 (5): non-negative matrix factorization (NMF) and EpiDISH (6, 7). Comparison of expected versus predicted DNA proportions by deconvolution with different algorithms (NNLS, NMF and EpiDISH) (6, 7). (B) The predicted cell fractions for the neuron-glia-DNA mixes from dataset GSE41826 (5) are depicted based on the eight cell-type-specific CpGs for NMF and EpiDISH. The best correlation of the predicted cell fractions with the real mixture of neurons/glia was observed for the NNLS-based deconvolution (Figure 4), while EpiDISH did not misclassify any other cell type. (C) Cell type DNA mixes from dataset GSE122126 (8). Comparison of expected versus predicted DNA proportions by deconvolution with different reference matrices. (D) Pyrosequencing of DNA mixes. Comparison of expected versus predicted DNA proportions by deconvolution. 3

Supplemental Figure S4: Deconvolution of cell mixtures based on individual cell-type-specific CpGs (A) Deconvolution of normal tissues from the TCGA database (450K BeadChip). Shown are estimated cellular fractions. The relevant CpG for neurons was not available for TCGA datasets and therefore left out. (B) Deconvolution of healthy tissues based on pyrosequencing of DNAm at the eight relevant CpGs.

4

Supplemental Table S1. 450k/EPIC Illumina BeadChip datasets used in this study

NUMBER OF GSE SAMPLE TYPE REFERENCES SAMPLES Training dataset GSE34486* endothelial cells 10 (9) GSE40699 muscle cells, epithelial cells, hepatocytes, fibroblasts, 26 (10) astrocyte, endothelial cells GSE41933 mesenchymal stromal cells 12 (11) GSE43976 leukocytes 10 (12) GSE50222 leukocytes 8 (13) GSE52025 fibroblasts 2 (14) GSE52112 mesenchymal stromal cells 34 (15) GSE58622 adipocytes 10 (16) GSE59065 leukocytes 20 (17) GSE59091 induced pluripotent stem cells, fibroblasts 12 (18) GSE59250 leukocytes 60 (19) GSE59796 leukocytes 4 (20) GSE60753 hepatocytes 15 (2) GSE63409 leukocytes 30 (21) GSE65078 induced pluripotent stem cells, fibroblasts 8 (22) GSE68134 induced pluripotent stem cells, fibroblasts 6 (23) GSE71955 leukocytes 20 (24) GSE74877 epithelial cells, melanocytes, mesenchymal stromal 9 (25) cells, fibroblasts, endothelial cells GSE77135 fibroblasts 20 (26) GSE79144 glia, neurons 18 (27) GSE79695 mesenchymal stromal cells 12 (28) GSE82234 endothelial cells 3 (29) GSE85647 leukocytes 6 (30) GSE87095 leukocytes 10 (31) GSE87177 endothelial cells 1 (32) GSE88824 leukocytes 16 (33) GSE92843 epithelial cells 1 (34) GSE95096 fibroblasts 1 (35) GSE98203 neurons 10 (36) GSE99716 endothelial cells 1 (37) GSE103253* endothelial cells 10 (38) GSE107226 fibroblasts 4 (39)

Validation dataset GSE34486* endothelial cells 6 (9) GSE51921 iPSCs, fibroblasts 6 (40) GSE53302 muscle stem cells 6 (41) GSE68851 fibroblasts 12 (42) GSE71244 leukocytes 24 (43) GSE74486 glia, neurons 15 (44) GSE85566 epithelial cells 6 (45) GSE86258 fibroblasts 7 (46) GSE86829 fibroblasts 3 (47) GSE87797 mesenchymal stromal cells 12 (48) GSE103253* endothelial cells 15 (38) GSE104287 leukocytes 8 (49) GSE106099 feto-placental endothelial cells 12 (50) GSE109042 buccal epithelial cells 6 (51) GSE111396 fibroblasts 14 (52) GSE122126 adipocytes, neurons, hepatocytes, endothelial cells, 18 (13 EPIC) (8) epithelial cells, leukocytes

Other datasets GSE41826 glia-neuron DNA mixes 9 (5) GSE60753 normal and cirrhotic liver 100 (2) GSE63704 normal and fibrotic lung 80 (1) GSE122126 cell type DNA mixes 8 (8) * Samples from these studies were considered either for training or validation sets

5

Supplemental Table S2. Association of fibroblast-associated DNAm with overall survival in cancer

TCGA SURV_PVAL SURV_PVAL SURV_PVAL CANCER TYPE PROJECT CG18096962 CG18005280 FIBROSCORE TCGA-ACC Adrenocortical Carcinoma 0.0001* 0.7525 0.0003* TCGA-MESO Mesothelioma 0.2466 0.0001* 0.0011* TCGA-HNSC Head and Neck Squamous Cell Carcinoma 0.7474 0.0153* 0.0050* TCGA-PCPG Pheochromocytoma and Paraganglioma 0.1130 0.9490 0.0064* TCGA-KICH Kidney Chromophobe 0.0170* 0.1673 0.0119* TCGA-KIRC Kidney Renal Clear Cell Carcinoma 0.2481 0.0103* 0.0619 TCGA-BLCA Bladder Urothelial Carcinoma 0.3357 0.2406 0.0623 TCGA-THYM Thymoma 0.1658 0.1807 0.1081 TCGA-PRAD Prostate Adenocarcinoma 0.7707 0.9890 0.1087 TCGA-SARC Sarcoma 0.1208 0.3432 0.1390 TCGA-UCEC Uterine Corpus Endometrial Carcinoma 0.6565 0.7381 0.1453 TCGA-LGG Brain Lower Grade Glioma 0.0113* 0.0177* 0.1704 TCGA-THCA Thyroid Carcinoma 0.1991 0.5390 0.2141 TCGA-LUAD Lung Adenocarcinoma 0.4578 0.3120 0.2541 TCGA-BRCA Breast Invasive Carcinoma 0.4685 0.8774 0.2661 TCGA-ESCA Esophageal Carcinoma 0.7665 0.4520 0.3506 TCGA-READ Rectum Adenocarcinoma 0.6664 0.2644 0.4358 TCGA-LIHC Liver Hepatocellular Carcinoma 0.5432 0.8678 0.4505 TCGA-PAAD Pancreatic Adenocarcinoma 0.9590 0.0090* 0.4868 TCGA-TGCT Testicular Germ Cell Tumors 0.5297 0.7229 0.4901 TCGA-LAML Acute Myeloid Leukemia 0.2399 0.9467 0.4939 TCGA-CHOL Cholangiocarcinoma 0.2521 0.2828 0.5361 Lymphoid Neoplasm Diffuse Large B-cell TCGA-DLBC 0.8924 0.4410 0.5602 Lymphoma TCGA-UCS Uterine Carcinosarcoma 0.0179* 0.0865 0.6019 TCGA-GBM Glioblastoma Multiforme 0.7417 0.3277 0.6096 TCGA-SKCM Skin Cutaneous Melanoma 0.6751 0.7819 0.6126 TCGA-UVM Uveal Melanoma 0.3799 0.0001* 0.6207 Cervical Squamous Cell Carcinoma & TCGA-CESC 0.5976 0.3391 0.6233 Endocervical Adenocarcinoma TCGA-OV Ovarian Serous Cystadenocarcinoma 0.6395 0.0922 0.6395 TCGA-COAD Colon Adenocarcinoma 0.7778 0.7443 0.7918 TCGA-LUSC Lung Squamous Cell Carcinoma 0.9646 0.4866 0.9541 TCGA-KIRP Kidney Renal Papillary Cell Carcinoma 0.2736 0.0455* 0.9929 * p < 0.05

6

Supplemental Table S3. Application for cell type deconvolution

An application for cell type deconvolution is provided as separate Excel tool. The mean DNAm values for the cell-type-specific CpGs of the Illumina BeadChip training dataset are given as reference matrix. Furthermore, the application allows NNLS predictions to estimate the cellular composition in independent datasets. This table was generated in analogy to the NNLS application for Epi-Blood-Count (53).

Supplemental Table S4. Primer DNA sequences used for pyrosequencing

NAME DNA SEQUENCE cg18096962_Forward GAGTATTGGGTTTATTTAGTTTTAGGAT cg18096962_Reverse_Biotin TCAAATTCTATTTACTACCCTCTTCC cg18096962_Sequencing GTTTTTATTTTTGAG cg18005280_Forward TATTGGTGTTATTGGGGGAGG cg18005280_Reverse_Biotin CCCACAACCATTCTAAAACAATC cg18005280_Sequencing TGTTATTGGGGGAGG cg10673833_Forward TGTTGTTAGGGTTGGAAGTTAATTT cg10673833_Reverse_Biotin CACCAACCTCCTCCAATACTAATATAA cg10673833_Sequencing GGGGAGGATTTAGT cg06421238_Forward TTGTGGGGGATGGGTAGT cg06421238_Reverse_Biotin ACCTCCTCCCTACAAATCCTATATCT cg06421238_Sequencing GATAAAGTTTAGGAAGAGGTT cg06631999_Forward_Biotin GGGTTGTTTTTTGGTTATTAGAGTTAGGTA cg06631999_Reverse CTCTTCTTTCCAATTTTTTCCAAATAATC cg06631999_Sequencing CTCTAACTCAATCCCTAAATAC cg23068797_Forward_Biotin TTTTTGGGTTTAGGAGGAATGTT cg23068797_Reverse CCAACTAATACCACATCTAAAACTATTTACAATAC cg23068797_Sequencing AATACCACATCTAAAACTATTTAC cg27309098_Forward_Biotin GAGGAAATTGAGGTTTAGAGATATGAA cg27309098_Reverse CTAAAATCAAACTTAAAATACAACTCCTTAATA cg27309098_Sequencing CAAAAAATTTTTACC cg27197524_Forward_Biotin GAAGAATTTGAATTTTAGGGAAGAAGTAT cg27197524_Reverse CCCAACAAACAAAAACAAAAATTCAATA cg27197524_Sequencing TACTAAACTCTAAAACCTAC cg21548464_Forward GTTTTTTAGTTGGGATTTATTTAGATTTGT cg21548464_Reverse_Biotin AACCCTTACCATCTTCTACCTAAACT cg21548464_Sequencing CATATTCAAAATTCTCATCAT cg09998451_Forward_Biotin GGGAATTTTGTATTTTAGTTGTGGATTTTT cg09998451_Reverse TAAACCTCAATTAACCCCTACTCAA cg09998451_Sequencing GTAAAATTTTGTTTGAT

7

Supplemental References

1. Wielscher M, Vierlinger K, Kegler U, Ziesche R, Gsur A, Weinhausel A. Diagnostic Performance of Plasma DNA Methylation Profiles in Lung Cancer, Pulmonary Fibrosis and COPD. EBioMedicine. 2015;2(8):929-36.

2. Hlady RA, Tiedemann RL, Puszyk W, Zendejas I, Roberts LR, Choi JH, et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget. 2014;5(19):9425-43.

3. Pierce RA, Field ED, Mutis T, Golovina TN, Von Kap-Herr C, Wilke M, et al. The HA-2 minor histocompatibility antigen is derived from a diallelic encoding a novel human class I myosin protein. J Immunol. 2001;167(6):3223-30.

4. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397- 406.

5. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290-302.

6. Zheng SC, Breeze CE, Beck S, Teschendorff AE. Identification of differentially methylated cell types in epigenome-wide association studies. Nat Methods. 2018;15(12):1059-66.

7. Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Adv Neur In. 2001;13:556-62.

8. Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068.

9. Bronneke S, Bruckner B, Peters N, Bosch TC, Stab F, Wenck H, et al. DNA methylation regulates lineage-specifying genes in primary lymphatic and blood endothelial cells. Angiogenesis. 2012;15(2):317-29.

10. Consortium EP. An integrated encyclopedia of DNA elements in the . Nature. 2012;489(7414):57-74.

11. Reinisch A, Etchart N, Thomas D, Hofmann NA, Fruehwirth M, Sinha S, et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood. 2015;125(2):249-60.

12. Kular L, Liu Y, Ruhrmann S, Zheleznyakova G, Marabita F, Gomez-Cabrero D, et al. DNA methylation as a mediator of HLA- DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun. 2018;9(1):2397.

13. Nestor CE, Barrenas F, Wang H, Lentini A, Zhang H, Bruhn S, et al. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014;10(1):e1004059.

14. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37.

15. Fernandez AF, Bayon GF, Urdinguio RG, Torano EG, Garcia MG, Carella A, et al. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res. 2015;25(1):27-40.

16. Dahlman I, Sinha I, Gao H, Brodin D, Thorell A, Ryden M, et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int J Obes (Lond). 2015;39(6):910-9.

17. Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Sci Rep. 2015;5:13107.

18. Butcher LM, Ito M, Brimpari M, Morris TJ, Soares FAC, Ahrlund-Richter L, et al. Non-CG DNA methylation is a biomarker for assessing endodermal differentiation capacity in pluripotent stem cells. Nat Commun. 2016;7:10458.

19. Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 2013;9(8):e1003678.

20. Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, et al. DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin. 2014;7:21.

21. Jung N, Dai B, Gentles AJ, Majeti R, Feinberg AP. An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun. 2015;6:8489.

22. Burrows CK, Banovich NE, Pavlovic BJ, Patterson K, Gallego Romero I, Pritchard JK, et al. Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs. PLoS Genet. 2016;12(1):e1005793.

23. Wang XM, Yik WY, Zhang P, Lu W, Huang N, Kim BR, et al. Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities. Stem Cell Res Ther. 2015;6:158.

8

24. Limbach M, Saare M, Tserel L, Kisand K, Eglit T, Sauer S, et al. Epigenetic profiling in CD4+ and CD8+ T cells from Graves' disease patients reveals changes in genes associated with T cell receptor signaling. J Autoimmun. 2016;67:46-56.

25. Holm K, Staaf J, Lauss M, Aine M, Lindgren D, Bendahl PO, et al. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res. 2016;18(1):27.

26. Ivanov NA, Tao R, Chenoweth JG, Brandtjen A, Mighdoll MI, Genova JD, et al. Strong Components of Epigenetic Memory in Cultured Human Fibroblasts Related to Site of Origin and Donor Age. PLoS Genet. 2016;12(2):e1005819.

27. Do C, Lang CF, Lin J, Darbary H, Krupska I, Gaba A, et al. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation. Am J Hum Genet. 2016;98(5):934-55.

28. von der Heide EK, Neumann M, Vosberg S, James AR, Schroeder MP, Ortiz-Tanchez J, et al. Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia. 2017;31(5):1069-78.

29. Franzen J, Zirkel A, Blake J, Rath B, Benes V, Papantonis A, et al. Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell. 2017;16(1):183-91.

30. Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, et al. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun. 2017;82:62-73.

31. Julia A, Absher D, Lopez-Lasanta M, Palau N, Pluma A, Waite Jones L, et al. Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in B cells. Hum Mol Genet. 2017;26(14):2803-11.

32. Uehiro N, Sato F, Pu F, Tanaka S, Kawashima M, Kawaguchi K, et al. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res. 2016;18(1):129.

33. Kennedy DW, White NM, Benton MC, Fox A, Scott RJ, Griffiths LR, et al. Critical evaluation of linear regression models for cell- subtype specific methylation signal from mixed blood cell DNA. PLoS One. 2018;13(12):e0208915.

34. Kiehl S, Zimmermann T, Savai R, Pullamsetti SS, Seeger W, Bartkuhn M, et al. Epigenetic silencing of downstream genes mediated by tandem orientation in lung cancer. Sci Rep. 2017;7(1):3896.

35. Oleksiewicz U, Gladych M, Raman AT, Heyn H, Mereu E, Chlebanowska P, et al. TRIM28 and Interacting KRAB-ZNFs Control Self-Renewal of Human Pluripotent Stem Cells through Epigenetic Repression of Pro-differentiation Genes. Stem Cell Reports. 2017;9(6):2065-80.

36. Kozlenkov A, Jaffe AE, Timashpolsky A, Apontes P, Rudchenko S, Barbu M, et al. DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age. Genes (Basel). 2017;8(6).

37. Takasawa K, Arai Y, Yamazaki-Inoue M, Toyoda M, Akutsu H, Umezawa A, et al. DNA hypermethylation enhanced telomerase reverse transcriptase expression in human-induced pluripotent stem cells. Hum Cell. 2018;31(1):78-86.

38. Herzog EM, Eggink AJ, Willemsen SP, Slieker RC, Wijnands KPJ, Felix JF, et al. Early- and late-onset preeclampsia and the tissue-specific epigenome of the placenta and newborn. Placenta. 2017;58:122-32.

39. Lee JU, Son JH, Shim EY, Cheong HS, Shin SW, Shin HD, et al. Global DNA Methylation Pattern of Fibroblasts in Idiopathic Pulmonary Fibrosis. DNA Cell Biol. 2019;38(9):905-14.

40. Fernandez-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sanchez-Danes A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7(12):1529-46.

41. Bigot A, Duddy WJ, Ouandaogo ZG, Negroni E, Mariot V, Ghimbovschi S, et al. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Rep. 2015;13(6):1172- 82.

42. Vizoso M, Puig M, Carmona FJ, Maqueda M, Velasquez A, Gomez A, et al. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis. 2015;36(12):1453-63.

43. Mamrut S, Avidan N, Staun-Ram E, Ginzburg E, Truffault F, Berrih-Aknin S, et al. Integrative analysis of methylome and transcriptome in human blood identifies extensive sex- and immune cell-specific differentially methylated regions. Epigenetics. 2015;10(10):943-57.

44. Mendioroz M, Do C, Jiang X, Liu C, Darbary HK, Lang CF, et al. Trans effects of aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol. 2015;16:263.

45. Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight. 2016;1(20):e90151.

46. Pidsley R, Lawrence MG, Zotenko E, Niranjan B, Statham A, Song J, et al. Enduring epigenetic landmarks define the cancer microenvironment. Genome Res. 2018;28(5):625-38.

9

47. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17(1):208.

48. Fernandez-Rebollo E, Mentrup B, Ebert R, Franzen J, Abagnale G, Sieben T, et al. Human Platelet Lysate versus Fetal Calf Serum: These Supplements Do Not Select for Different Mesenchymal Stromal Cells. Sci Rep. 2017;7(1):5132.

49. Verma D, Parasa VR, Raffetseder J, Martis M, Mehta RB, Netea M, et al. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Sci Rep. 2017;7(1):12305.

50. Cvitic S, Novakovic B, Gordon L, Ulz CM, Muhlberger M, Diaz-Perez FI, et al. Human fetoplacental arterial and venous endothelial cells are differentially programmed by gestational diabetes mellitus, resulting in cell-specific barrier function changes. Diabetologia. 2018;61(11):2398-411.

51. Lussier AA, Morin AM, MacIsaac JL, Salmon J, Weinberg J, Reynolds JN, et al. DNA methylation as a predictor of fetal alcohol spectrum disorder. Clin Epigenetics. 2018;10:5.

52. Clifford RL, Fishbane N, Patel J, MacIsaac JL, McEwen LM, Fisher AJ, et al. Altered DNA methylation is associated with aberrant gene expression in parenchymal but not airway fibroblasts isolated from individuals with COPD. Clin Epigenetics. 2018;10:32.

53. Frobel J, Bozic T, Lenz M, Uciechowski P, Han Y, Herwartz R, et al. Leukocyte Counts Based on DNA Methylation at Individual Cytosines. Clin Chem. 2018;64(3):566-75.

10