Screening for Asymptomatic Bacteriuria in Adults: an Updated Systematic Review for the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Screening for Asymptomatic Bacteriuria in Adults: an Updated Systematic Review for the U.S Evidence Synthesis Number 183 Screening for Asymptomatic Bacteriuria in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. HHSA-290-2015-00007-I, Task Order No. 3 Prepared by: Kaiser Permanente Research Affiliates Evidence-based Practice Center Kaiser Permanente Center for Health Research Portland, OR Investigators: Jillian T. Henderson, PhD, MPH Elizabeth M. Webber, MS Sarah I. Bean, MPH AHRQ Publication No. 19-05252-EF-1 September 2019 This report is based on research conducted by the Kaiser Permanente Research Affiliates Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA-290-2015-00007-I, Task Order No. 3). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients). This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. Acknowledgments The authors gratefully acknowledge the following individuals for their contributions to this project: Justin Mills, MD, MPH, at AHRQ; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; Brandy Peaker, MD, MPH, at the Centers for Disease Control and Prevention, Andrew S. Narva, MD, Carmelle Norice-Tra, MD, PhD, and A. Gretchen Buckler, MD, MPH, at the National Institutes of Health, for providing federal partner review of the draft report; Brenda Kazemier, MD, Christine Kistler, MD, Fiona Smaill, MBChB, Lindsay Nicolle, MD, and Dimitri Drekonja, MD, who provided expert review of the draft report; Jennifer S. Lin, MD, MCR, for mentoring and project oversight; Peter Miksovsky, MD, who served as a clinical consultant during the review process; Elizabeth O’Connor, PhD, and Nadia Redmond, MS, who assisted with data analysis; Leslie Perdue, MPH, who provided technical writing assistance; Smyth Lai, MLS, who conducted literature searches; and Katherine Essick for technical and editorial assistance at the Center for Health Research. Suggested Citation Henderson JT, Webber E, Bean SI. Screening for Asymptomatic Bacteriuria in Adults: An Updated Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 183. Rockville, MD: Agency for Healthcare Research and Quality; 2019. Screening for Asymptomatic Bacteriuria ii Kaiser Permanente Research Affiliates EPC Structured Abstract Objective: To update the USPSTF’s previous recommendation statement on Screening for Asymptomatic Bacteriuria in Adults, we systematically reviewed evidence on the benefits and harms of screening for asymptomatic bacteriuria (ASB) and treatment for pregnant women, nonpregnant women, and men. Data Sources: MEDLINE, PubMed Publisher-Supplied Records, and the Cochrane Collaboration Central Registry of Controlled Trials for literature published through September 7, 2018. Study Selection: Two researchers independently reviewed 4,318 titles and abstracts and 288 full-text articles against prespecified inclusion criteria, then abstracted data from included studies. English-language randomized trials and observational studies were included to assess the direct health benefits and potential harms of screening for ASB. Randomized trials with control conditions of placebo or no treatment were included to evaluate the benefits and harms of ASB treatment, with observational studies also included for assessment of potential treatment harms among pregnant women. Included study populations were asymptomatic community-dwelling adults (ages 18+), not undergoing treatment or specialized care related to surgical or urologic procedures, including catheterization. Pregnant women of any age were also included and studied as a separate population. Due to the historical nature of the evidence, more lenient quality rating of studies was employed to allow for changes in trial reporting standards over time. Data Analysis: We synthesized data on the benefits and harms of ASB screening and treatment for general adult populations separately from studies of pregnant women. Health outcomes and harms were sparsely and inconsistently reported in the studies conducted among general adult populations and in studies of screening conducted among pregnant women, precluding meta- analysis. For these outcomes, we described findings in the review text and tables and conducted narrative synthesis. Outcomes for the treatment of screen-detected ASB in pregnancy were analyzed with random effects meta-analysis to calculate the pooled differences when data were sufficient. We examined statistical heterogeneity among the pooled studies using standard χ2 tests and estimated the proportion of total variability in point estimates using the I2 statistic. We generated funnel plots and conducted the Egger tests for small-study effects for all pooled analyses that included at least 10 studies. Using established methods, we assessed the strength of evidence for each question. Results: We included 19 studies of screening or treatment for ASB reported in 36 publications. Fourteen of the included studies were conducted among pregnant women; two of them examining the effectiveness and/or harms of screening (N=5,289) and 12 examining the effectiveness and harms of treatment (N=2,377). Five included studies examined the effectiveness and harms of treatment among adult men and nonpregnant women (N=777), with most primarily focused on women. Reporting on the characteristics of study participants was sparse in the included literature, and all but one included were judged to be fair quality in risk of bias assessments. Screening for Asymptomatic Bacteriuria iii Kaiser Permanente Research Affiliates EPC Screening: Of the two cohort studies on screening in pregnant women, one conducted in Spain (N=4,917) identified a three-fold reduction in risk for pyelonephritis in unadjusted comparisons on a retrospective unscreened and screened cohort. The other cohort study of screening in pregnant women was conducted in Turkey (N=372) and had low statistical power for comparisons of health outcomes in a screened and unscreened cohort due to rarity of outcome events. For health outcomes related to ASB screening in adult men/nonpregnant women, no eligible studies were identified for inclusion in the review. Treatment: Twelve trials of ASB treatment among pregnant women (N=2,377) and five trials of ASB treatment among general adult populations (N=777) were included. Screening with culture testing was used in all but one recent included study. Antibiotic treatment was the most common intervention, but the treatment protocols varied considerably across studies. Data from 12 trials provided evidence that treatment of ASB in pregnancy reduces the risk of pyelonephritis (pooled relative risk [RR], 0.24 [95% CI, 0.14 to 0.40], k=12, n=2,068, I2 56.9%). Seven treatment studies reported infant outcomes, demonstrating a reduction in low birthweight (<2500g or or small for gestational age [SGA; weight below the 10th percentile for gestation age]) (pooled RR, 0.64 [95% CI, 0.46 to 0.90], k=7, n=1,522, I2 15.8.6%). Data on potential harms and adverse effects of antibiotic treatment of ASB in pregnancy were sparsely reported in the trials, and power was low for observing rare outcomes. A pooled analysis from five studies reporting congenital malformations was null (pooled RR, 0.44 [95% CI, 0.16 to 1.22], k=5, n=961, I2 0%). Adverse reactions to medications were reported, including vaginitis, diarrhea, rashes, and nausea. Five trials (N=777) addressed the benefits of treating screen-detected ASB general adult populations, focused on women and older adults. Four trials were conducted only in women, and the fifth trial was primarily among older adult women (84%). Treatment was variable across the trials, ranging from a single dose to 3 months of daily antibiotics. Overall, no study found a difference in mortality, mobility, or rates of symptomatic infections between treated and untreated individuals. Data were inconsistently reported in the four studies reporting harms because they did not report any adverse events or identified few or no patients who withdrew from the study based on adverse events. Limitations: This review was limited to English-language evidence, primarily from trials conducted in high and very high HDI countries. Risk of bias was judged
Recommended publications
  • Tryptose Blood Agar Base
    Tryptose Blood Agar Base Intended Use Principles of the Procedure Tryptose Blood Agar Base is used with blood in isolating, Tryptose is the source of nitrogen, carbon and amino acids in cultivating and determining the hemolytic reactions of fastidi- Tryptose Blood Agar Base. Beef extract provides additional ous microorganisms. nitrogen. Sodium chloride maintains osmotic balance. Agar is the solidifying agent. Summary and Explanation Investigations of the nutritive properties of tryptose demon- Supplementation with 5-10% blood provides additional growth strated that culture media prepared with this peptone were factors for fastidious microorganisms and is used to determine superior to the meat infusion peptone media previously used hemolytic patterns of bacteria. for the cultivation of Brucella, streptococci, pneumococci, me- Formula ningococci and other fastidious bacteria. Casman1,2 reported Difco™ Tryptose Blood Agar Base that a medium consisting of 2% tryptose, 0.3% beef extract, Approximate Formula* Per Liter 0.5% NaCl, 1.5% agar and 0.03% dextrose equaled fresh beef Tryptose .................................................................... 10.0 g infusion base with respect to growth of organisms. The small Beef Extract ................................................................. 3.0 g amount of carbohydrate was noted to interfere with hemolytic Sodium Chloride ......................................................... 5.0 g Agar ......................................................................... 15.0 g reactions, unless the medium was incubated in an atmosphere *Adjusted and/or supplemented as required to meet performance criteria. of carbon dioxide. Tryptose Blood Agar Base is a nutritious infusion-free basal Directions for Preparation from medium typically supplemented with 5-10% sheep, rabbit or Dehydrated Product horse blood for use in isolating, cultivating and determining 1. Suspend 33 g of the powder in 1 L of purified water.
    [Show full text]
  • Antibiotic Resistant Organisms Prevention and Control Guidelines for Healthcare Facilities
    Antibiotic Resistant Organisms Prevention and Control Guidelines for Healthcare Facilities Reference Document for use by Health Care Organizations for Internal Policy/Protocol Development Revised from Provincial Infection Control Network Antibiotic Resistant Organisms Prevention and Control Guidelines 2008 Provincial Infection Control Network 2013 PICNet Antibiotic Resistant Organism (ARO) Guidelines Table of Contents Revisions Working Group ................................................................................................................... 3 Acronyms .......................................................................................................................................... 4 1 Introduction ................................................................................................................................ 5 2 Purpose ....................................................................................................................................... 5 3 Scope .......................................................................................................................................... 5 4 Literature Search Strategy ............................................................................................................ 6 5 Methods ...................................................................................................................................... 6 6 Background ................................................................................................................................
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Detecting Carbapenem-Resistant Acinetobacter Baumannii (CRAB) Carriage: Which Body Site Should Be Cultured?
    Infection Control & Hospital Epidemiology (2020), 41, 965–967 doi:10.1017/ice.2020.197 Concise Communication Detecting carbapenem-resistant Acinetobacter baumannii (CRAB) carriage: Which body site should be cultured? Amir Nutman MD, MPH1,2 , Elizabeth Temkin DrPH1, Jonathan Lellouche PhD1, Debby Ben David MD1,2, David Schwartz PhD1 and Yehuda Carmeli MD, MPH1,2 1National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel and 2Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel Abstract We compared the yield of culturing various body sites to detect carriage of carbapenem-resistant Acinetobacter baumannii (CRAB). Culturing the skin using a premoistened sponge, with overnight enrichment and plating on CHROMagar MDR Acinetobacter, had the highest yield: 92%. Skin is satisfactory as a single site for active surveillance of CRAB. (Received 8 January 2020; accepted 28 April 2020; electronically published 19 June 2020) Acinetobacter baumannii is a multidrug-resistant pathogen caus- The primary outcome was screening yield for each body site ing severe infections in hospitals and long-term care facilities. sampled. Because there is no gold standard for CRAB screening, Detecting carriers is a mainstay of controlling nosocomial spread a patient was defined as a CRAB carrier if a culture from any of of resistant organisms. Screening for carbapenem-resistant the sites sampled was positive. Acinetobacter baumannii (CRAB) has been recommended to control outbreaks, but no specific recommendations have been Specimen collection methods made regarding which body sites to culture.1 In 2007, we studied the yield of culturing the nose, throat, axilla, groin, rectum, open Buccal mucosa and rectal specimens were collected using swabs wounds, and tracheal aspirates, and no site or combination of (Amies agar gel transport swab; Copan Italia S.P.A., Brescia, sites had high enough sensitivity to be recommended for CRAB Italy).
    [Show full text]
  • SHEEP BLOOD AGAR - for in Vitro Use Only - Catalogue No
    SHEEP BLOOD AGAR - For in vitro use only - Catalogue No. PS58 Our Sheep Blood Agar is a highly nutritious Interpretation of Results medium used for the cultivation and isolation of a variety of microorganisms. Sheep Blood Agar can be used as a primary- Our Sheep Blood Agar is based on the Oxoid plating medium. Primary isolation is performed to formulation; the prepared medium is said to offer separate and isolate organisms present in a sample. improved nutritional value resulting in better growth This separation allows for characterization of and larger colony size as well giving more colony types and may indicate the presence of consistent hemolytic reactions especially among the clinically significant bacteria. When examining streptococci. The base is specifically designed for plates a hand lens or stereoscopic microscope use with sheep blood as horse blood has shown to should be available for examining very small give different and conflicting hemolytic reactions colonies. The different types of colonial when incorporated into other blood agars. morphology appearing on the agar plate should be The nutritional components include pancreatic noted as well as the number of each morphotype digest of casein, neutralized peptone, and yeast present. Hemolysis is also a very useful differential extract, and the addition of sodium chloride characteristic that is best viewed when a bright light provides an osmotically balanced medium for is transmitted from behind the plate. Four different bacterial cells. The addition of 5% defibrinated types of hemolysis can be described: sheep blood allows for the determination of hemolytic reactions, an important differential 1. Alpha-hemolysis ( α) – Partial hemolysis that characteristic.
    [Show full text]
  • Oregon Multidrug-Resistant Organism (MDRO) Toolkit
    Ver. Oct 30, 2019 Oregon MDRO & C. difficile Toolkit OREGON MULTIDRUG-RESISTANT ORGANISM AND CLOSTRIDIOIDES DIFFICILE TOOLKIT Purpose Statement The purpose of this toolkit is to provide recommendations to Oregon healthcare facilities about strategies to prevent transmission of multidrug-resistant organisms (MDROs) and Clostridioides (formerly Clostridium) difficile during patient care. The toolkit recommendations provide general guidance and are not meant to replace facility-level policy or procedure. Local epidemiology as well as pertinent facility- or patient-level factors may affect the likelihood of MDRO transmission, and these factors should be taken into account when making decisions about transmission prevention strategies. The toolkit is intended to be a working document addressing high-impact organisms in Oregon hospitals. Given the continually evolving infection prevention and control landscape, including novel and emerging pathogens, this document will be updated as needed. Methods This toolkit was drafted by members of the Oregon Drug-Resistant Organism and Coordinated Regional Epidemiology (DROP-CRE) Network. To inform toolkit development, we convened a statewide Hospital Epidemiology Task Force to assist with two main objectives: 1) Optimize a practical approach to methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin- resistant enterococci (VRE) infection prevention and control; and 2) Establish statewide definitions for Gram-negative organisms in order to harmonize facility definitions, primarily for the purpose of uniform infection control practices. Over the course of 18 months, the Hospital Epidemiology Task Force reviewed existing drug- resistance definitions as published by collaboration of the European Centre for Disease Prevention and Control (eCDC) and the US Centers for Disease Control and Prevention (CDC).(1) In particular, the Task Force called attention to “possible extensively drug-resistant (XDR)” bacteria as those organisms harbor sufficiently broad drug resistance to substantially alter and limit treatment options.
    [Show full text]
  • Special Microbiology Practical Week 3. – STREPTOCOCCI Streptococci
    Special Microbiology practical week 3. – STREPTOCOCCI Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Older cultures may lose their Gram-positive character. Most streptococci are facultative anaerobes, and some are obligate (strict) anaerobes.Most require enriched media (blood agar). Streptococci are subdivided into groups by antibodies that recognize surface antigens These groups may include one or more species.Serologic grouping is based on antigenic differences in cell wall carbohydrates (groups A to V), in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci.Rebecca Lancefield developed the serologic classification scheme in 1933. β-hemolyticstrains possess group- specific cell wall antigens, most of which are carbohydrates. These antigens can be detected by immunologic assays and have been useful for the rapid identification of some important streptococcal pathogens.The most important groupable streptococci are A, B and D. Among the groupable streptococci, infectious disease (particularly pharyngitis) is caused by group A. Group A streptococci have a hyaluronic acid capsule.Streptococcus pneumoniae(a major cause of human pneumonia) and Streptococcus mutansand other so-called viridans streptococci (among the causes of dental caries) do not possess group antigen.Streptococcus pneumoniaehas a polysaccharide capsulethat acts as a virulence factor for the organism,more than 90 different serotypesare known, and these types differ in virulence. Beta Hemolysis Streptococcus pyogenes, or Group A beta-hemolytic Streptococci (GAS), and Streptococcus agalactiae, or Group B beta-hemolytic Streptococci (GBS) blood agar cultures display beta hemolysis. Beta hemolysis (β-hemolysis), called complete hemolysis, is a complete lysisof red blood cells in the media around and under the colonies: the area appears lightened (yellow) and transparent.
    [Show full text]
  • (MRSA) Prevention Guidelines in Spinal Cord Injury Centers Using the PARIHS Framework: a Mixed Methods Study Salva N
    Balbale et al. Implementation Science (2015) 10:130 DOI 10.1186/s13012-015-0318-x Implementation Science RESEARCH Open Access Evaluating implementation of methicillin- resistant Staphylococcus aureus (MRSA) prevention guidelines in spinal cord injury centers using the PARIHS framework: a mixed methods study Salva N. Balbale1,2,3†, Jennifer N. Hill1,2†, Marylou Guihan1,2,4†, Timothy P. Hogan5,6,7†, Kenzie A. Cameron8,9†, Barry Goldstein10,11† and Charlesnika T. Evans1,2,3,9* Abstract Background: To prevent methicillin-resistant Staphylococcus aureus (MRSA) in Spinal Cord Injury and Disorder (SCI/D) Centers, the “Guidelines for Implementation of MRSA Prevention Initiative in the Spinal Cord Injury Centers” were released in July 2008 in the Veterans Affairs (VA) Health Care System. The purpose of this study was to use the Promoting Action on Research Implementation in Health Systems (PARiHS) framework to evaluate the experiences of implementation of SCI/D MRSA prevention guidelines in VA SCI/D Centers approximately 2–3 years after the guidelines were released. Methods: Mixed methods were used across two phases in this study. The first phase included an anonymous, web-based cross-sectional survey administered toprovidersatall24VASCI/DCenters.Thesecondphaseincludedsemi-structured telephone interviews with providers at 9 SCI/D Centers. The PARiHS framework was used as the foundation of both the survey questions and semi-structured interview guide. Results: The survey was completed by 295 SCI/D providers (43.8 % response rate) from 22 of the 24 SCI/D Centers (91.7 % participation rate). Respondents included nurses (57.3 %), therapists (24.4 %), physicians (11.1 %), physician assistants (3.4 %), and other health care professionals (3.8 %).
    [Show full text]
  • Healthcare Associated Infections 2013 Report to the Wasington State
    Healthcare Associated Infections 2013 Report to the Washington State Legislature April 2014 Division of Disease Control and Health Statistics Healthcare Associated Infections 2013 Report to the Washington State Legislature April 2014 DOH 420-113 For more information or additional copies of this report contact: Washington State Department of Health Division of Disease Control and Health Statistics 101 Israel Road S.E. P.O. Box 47811 Olympia WA 98504 Phone: 360-236-4202 Fax: 360-236-4245 John Wiesman, DrPH, MPH, CPH Secretary of Health Acknowledgements The Washington State Department of Health would like to thank past and current members of our Healthcare Associated Infections (HAI) Advisory Committee for their participation and expertise. Page i Table of Contents Executive Summary ...................................................................................................................... 1 I. Background ................................................................................................................................ 3 2013 Legislative Action on Healthcare Associated Infections ................................................................. 3 HAI Advisory Committee ......................................................................................................................... 4 National Activity ....................................................................................................................................... 4 The Washington State HAI Program .......................................................................................................
    [Show full text]
  • Escherichia Coli Isolates Causing Asymptomatic Bacteriuria in Catheterized and Noncatheterized Individuals Possess Similar Virulence Propertiesᰔ 1 2 1 2
    JOURNAL OF CLINICAL MICROBIOLOGY, July 2010, p. 2449–2458 Vol. 48, No. 7 0095-1137/10/$12.00 doi:10.1128/JCM.01611-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Escherichia coli Isolates Causing Asymptomatic Bacteriuria in Catheterized and Noncatheterized Individuals Possess Similar Virulence Propertiesᰔ 1 2 1 2 Rebecca E. Watts, Viktoria Hancock, Cheryl-Lynn Y. Ong, Rebecca Munk Vejborg, Downloaded from Amanda N. Mabbett,1 Makrina Totsika,1 David F. Looke,3 Graeme R. Nimmo,4 Per Klemm,2 and Mark A. Schembri1* School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia1; Microbial Adhesion Group, DTU Food, Technical University of Denmark, Lyngby, Denmark2; and Infection Management Services, Princess Alexandra Hospital,3 and Queensland Health Pathology Service, Department of Microbiology, Royal Brisbane and Women’s Hospital,4 Brisbane, Queensland, Australia Received 19 August 2009/Returned for modification 12 November 2009/Accepted 22 April 2010 http://jcm.asm.org/ Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli being responsible for >80% of all cases. Asymptomatic bacteriuria (ABU) occurs when bacteria colonize the urinary tract without causing clinical symptoms and can affect both catheterized patients (catheter- associated ABU [CA-ABU]) and noncatheterized patients. Here, we compared the virulence properties of a collection of ABU and CA-ABU nosocomial E. coli isolates in terms of antibiotic resistance, phylogenetic grouping, specific UTI-associated virulence genes, hemagglutination characteristics, and biofilm formation. CA-ABU isolates were similar to ABU isolates with regard to the majority of these characteristics; exceptions were that CA-ABU isolates had a higher prevalence of the polysaccharide capsule marker genes kpsMT II and on October 22, 2015 by University of Queensland Library kpsMT K1, while more ABU strains were capable of mannose-resistant hemagglutination.
    [Show full text]
  • Streptococci
    STREPTOCOCCI Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Older cultures may lose their Gram-positive character. Most streptococci are facultative anaerobes, and some are obligate (strict) anaerobes. Most require enriched media (blood agar). Streptococci are subdivided into groups by antibodies that recognize surface antigens (Fig. 11). These groups may include one or more species. Serologic grouping is based on antigenic differences in cell wall carbohydrates (groups A to V), in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. Rebecca Lancefield developed the serologic classification scheme in 1933. β-hemolytic strains possess group-specific cell wall antigens, most of which are carbohydrates. These antigens can be detected by immunologic assays and have been useful for the rapid identification of some important streptococcal pathogens. The most important groupable streptococci are A, B and D. Among the groupable streptococci, infectious disease (particularly pharyngitis) is caused by group A. Group A streptococci have a hyaluronic acid capsule. Streptococcus pneumoniae (a major cause of human pneumonia) and Streptococcus mutans and other so-called viridans streptococci (among the causes of dental caries) do not possess group antigen. Streptococcus pneumoniae has a polysaccharide capsule that acts as a virulence factor for the organism; more than 90 different serotypes are known, and these types differ in virulence. Fig. 1 Streptococci - clasiffication. Group A streptococci causes: Strep throat - a sore, red throat, sometimes with white spots on the tonsils Scarlet fever - an illness that follows strep throat. It causes a red rash on the body.
    [Show full text]
  • Inhibition of a Staphylococcal Hemolysin by a Soluble Substance Produced by a Nonhemolytic
    INHIBITION OF A STAPHYLOCOCCAL HEMOLYSIN BY A SOLUBLE SUBSTANCE PRODUCED BY A NONHEMOLYTIC MICROCOCCUS SPECIES PINGHUI LIU' Kitasato Institute for Infectious Diseases, Tokyo, Japan Received for publication June 2, 1954 Inhibition of the activity of a bacterial toxin usually grew into the line of micrococcus. The by antitoxic immune sera or by chemicals such as picture resembles those in an article published by formalin is commonly observed. The inhibition Elek and Levy (1950). The inhibition of hemolysis caused by metabolic products of other types of in their cases, however, was caused by specific bacteria, however, has never been described. The antihemolytic sera. In order to avoid the confu- present communication describes a preliminary sion with specific antisera which are often called observation of one such phenomenon. "antihemolysin", the soluble substance produced by the micrococcus will be referred to as "hemol- EXPERIMENTAL METHODS AND RESULTS ysin inhibiting substance" (HIS). A colony of a yellow pigment forming, non- Identification of the hemolysin inhibited by hemolytic Micrococcus species (tentatively identi- hemolysin inhibiting substance. It is well known fied as Micrococcus luteus) was found on a human that staphylococci from various sources produce blood agar plate close to a hemolytic staphylo- several different types of hemolysins (Glenny and coccal colony. It was also noted that the zone of Stevens, 1935; Smith and Price, 1938; Williams hemolysis of this Staphylococcus (the term and Harper, 1947). It was necessary to identify Micrococcus is not used here for this organism to the type of hemolysin concerned in this phe- avoid confusion with the other) was slightly but nomenon.
    [Show full text]