Emergent Crowns and Light-Use Complementarity Lead to Global Maximum Biomass and Leaf Area in Sequoia Sempervirens Forests ⇑ Robert Van Pelt A,B, , Stephen C
Forest Ecology and Management 375 (2016) 279–308 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests ⇑ Robert Van Pelt a,b, , Stephen C. Sillett a,b, William A. Kruse c, James A. Freund b, Russell D. Kramer b a Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA b School of Environmental and Forest Sciences, College of the Environment, University of Washington, Box 352100, Seattle, WA 98195, USA c Kruse Imaging, 3230 Ross Rd., Palo Alto, CA 94303, USA article info abstract Article history: Forests >80 m tall have the highest biomass, and individual trees in these forests are Earth’s largest with Received 23 January 2016 deep crowns emerging above neighboring vegetation, but it is unclear to what degree these maxima Received in revised form 9 May 2016 depend on the emergent trees themselves or a broader-scale forest structure. Here we advance the Accepted 13 May 2016 concept of emergent facilitation, whereby emergent trees benefit co-occurring species. Trees reorganize foliage within crowns to optimize available light and, if long-lived, can reiterate after crown damage to become emergent. The height, depth, and spacing of emergent trees in turn allows for abundant light Keywords: to pass through the canopy, leading to light-use complementarity as well as elevated biomass, leaf area, Sequoia sempervirens and species diversity of the forest as a whole. We chose Sequoia sempervirens to develop this concept and Old growth Forest structure installed eleven 1-ha plots in old-growth forests spanning nearly six degrees of latitude in California.
[Show full text]