Plant Disease Control Efficacy of Platycladus Orientalis and Its
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jaiswal Amit Et Al. IRJP 2011, 2 (11), 58-61
Jaiswal Amit et al. IRJP 2011, 2 (11), 58-61 INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN 2230 – 8407 Available online www.irjponline.com Review Article REVIEW / PHARMACOLOGICAL ACTIVITY OF PLATYCLADUS ORIEANTALIS Jaiswal Amit1*, Kumar Abhinav1, Mishra Deepali2, Kasula Mastanaiah3 1Department Of Pharmacology, RKDF College Of Pharmacy,Bhopal, (M.P.)India 2Department Of Pharmacy, Sir Madanlal Institute Of Pharmacy,Etawah (U.P.)India 3 Department Of Pharmacology, The Erode College Of Pharmacy, Erode, Tamilnadu, India Article Received on: 11/09/11 Revised on: 23/10/11 Approved for publication: 10/11/11 *Email: [email protected] , [email protected] ABSTRACT Platycladus orientalis, also known as Chinese Arborvitae or Biota. It is native to northwestern China and widely naturalized elsewhere in Asia east to Korea and Japan, south to northern India, and west to northern Iran. It is a small, slow growing tree, to 15-20 m tall and 0.5 m trunk diameter (exceptionally to 30 m tall and 2 m diameter in very old trees). The different parts of the plant are traditionally used as a diuretic, anticancer, anticonvulsant, stomachic, antipyretic, analgesic and anthelmintic. However, not many pharmacological reports are available on this important plant product. This review gives a detailed account of the chemical constituents and also reports on the pharmacological activity activities of the oil and extracts of Platycladus orientalis. Keywords: Dry distillation, Phytochemisty, Pharmacological activity, Platycladus orientalis. INTRODUCTION cultivated in Europe since the first half of the 18th century. In cooler Botanical Name : Platycladus orientalis. areas of tropical Africa it has been planted primarily as an Family: Cupressaceae. -
Chamaecyparis Lawsoniana: Lawson Falsecypress1 Edward F
ENH313 Chamaecyparis lawsoniana: Lawson Falsecypress1 Edward F. Gilman and Dennis G. Watson2 Introduction General Information Often seen at 40 to 60 feet tall by 15 feet wide in its culti- Scientific name: Chamaecyparis lawsoniana vated form, this North American native can soar to heights Pronunciation: kam-eh-SIP-uh-riss law-so-nee-AY-nuh of 100 to 150 feet in the wild. The massive, thick trunk and Common name(s): Lawson falsecypress, Port Orford cedar formal, upright, conical silhouette is softened by the gently Family: Cupressaceae weeping tips of the short, upright branches. The flattened, USDA hardiness zones: 5B through 7B (Fig. 2) dark blue-green branchlets have a delicate, almost fern-like Origin: native to North America appearance, and are nicely complemented by the rough, Invasive potential: little invasive potential deeply furrowed, reddish-brown bark. Available in a wide Uses: specimen; screen; bonsai variety of forms and bluish foliage colors, Lawson falsecy- Availability: not native to North America press still remains today an important timber trees from the Pacific Northwest. But it is rare in the nursery trade and probably not well adapted to most landscapes. Figure 2. Range Description Height: 40 to 60 feet Spread: 15 to 25 feet Crown uniformity: symmetrical Figure 1. Mature Chamaecyparis lawsoniana: Lawson Falsecypress 1. This document is ENH313, one of a series of the Environmental Horticulture, UF/IFAS Extension. Original publication date November 1993. Reviewed May 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; Dennis G. Watson, former associate professor, Agricultural Engineering Department, UF/IFAS Extension, Gainesville FL 32611. -
Contributions to the Life-History of Tetraclinis Articu- Lata, Masters, with Some Notes on the Phylogeny of the Cupressoideae and Callitroideae
Contributions to the Life-history of Tetraclinis articu- lata, Masters, with some Notes on the Phylogeny of the Cupressoideae and Callitroideae. BY W. T. SAXTON, M.A., F.L.S., Professor of Botany at the Ahmedabad Institute of Science, India. With Plates XLIV-XLVI and nine Figures in the Text. INTRODUCTION. HE Gum Sandarach tree of Morocco and Algeria has been well known T to botanists from very early times. Some account of it is given by Hooker and Ball (20), who speak of the beauty and durability of the wood, and state that they consider the tree to be probably correctly identified with the Bvlov of the Odyssey (v. 60),1 and with the Ovlov and Ovia of Theo- phrastus (' Hist. PI.' v. 3, 7)/ as well as, undoubtedly, with the Citrus wood of the Romans. The largest trees met with by them, growing in an un- cultivated state, were about 30 feet high. The resin, known as sandarach, is stated to be collected by the Moors and exported to Europe, where it is used as a varnish. They quote Shaw (49 a and b) as having described and figured the tree under the name of Thuja articulata, in his ' Travels in Barbary'; this statement, however, is not accurate. In both editions of the work cited the plant is figured and described as ' Cupressus fructu quadri- valvi, foliis Equiseti instar articulatis '. Some interesting particulars of the use of the timber are given by Hansen (19), who also implies that the embryo has from three to six cotyledons. Both Hooker and Ball, and Hansen, followed by almost all others who have studied the plant, speak of it as Callitris qtiadrivalvis. -
Non-Native Trees and Large Shrubs for the Washington, D.C. Area
Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NON - NATIVE TREES AND LARGE SHRUBS FOR THE WASHINGTON, D.C. AREA Non-native trees are some of the most beloved plants in the landscape due to their beauty. In addition, these trees are grown for the shade, screening, structure, and landscape benefits they provide. Deciduous trees, whose leaves die and fall off in the autumn, are valuable additions to landscapes because of their changing interest throughout the year. Evergreen trees are valued for their year-round beauty and shelter for wildlife. Evergreens are often grouped into two categories, broadleaf evergreens and conifers. Broadleaf evergreens have broad, flat leaves. They also may have showy flowers, such as Camellia oleifera (a large shrub), or colorful fruits, such as Nellie R. Stevens holly. Coniferous evergreens either have needle-like foliage, such as the lacebark pine, or scale-like foliage, such as the green giant arborvitae. Conifers do not have true flowers or fruits but bear cones. Though most conifers are evergreen, exceptions exist. Dawn redwood, for example, loses its needles each fall. The following are useful definitions: Cultivar (cv.) - a cultivated variety designated by single quotes, such as ‘Autumn Gold’. A variety (var.) or subspecies (subsp.), in contrast, is found in nature and is a subdivision of a species (a variety of Cedar of Lebanon is listed). Full Shade - the amount of light under a dense deciduous tree canopy or beneath evergreens. Full Sun - at least 6 hours of sun daily. -
Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur. -
Common Conifers in New Mexico Landscapes
Ornamental Horticulture Common Conifers in New Mexico Landscapes Bob Cain, Extension Forest Entomologist One-Seed Juniper (Juniperus monosperma) Description: One-seed juniper grows 20-30 feet high and is multistemmed. Its leaves are scalelike with finely toothed margins. One-seed cones are 1/4-1/2 inch long berrylike structures with a reddish brown to bluish hue. The cones or “berries” mature in one year and occur only on female trees. Male trees produce Alligator Juniper (Juniperus deppeana) pollen and appear brown in the late winter and spring compared to female trees. Description: The alligator juniper can grow up to 65 feet tall, and may grow to 5 feet in diameter. It resembles the one-seed juniper with its 1/4-1/2 inch long, berrylike structures and typical juniper foliage. Its most distinguishing feature is its bark, which is divided into squares that resemble alligator skin. Other Characteristics: • Ranges throughout the semiarid regions of the southern two-thirds of New Mexico, southeastern and central Arizona, and south into Mexico. Other Characteristics: • An American Forestry Association Champion • Scattered distribution through the southern recently burned in Tonto National Forest, Arizona. Rockies (mostly Arizona and New Mexico) It was 29 feet 7 inches in circumference, 57 feet • Usually a bushy appearance tall, and had a 57-foot crown. • Likes semiarid, rocky slopes • If cut down, this juniper can sprout from the stump. Uses: Uses: • Birds use the berries of the one-seed juniper as a • Alligator juniper is valuable to wildlife, but has source of winter food, while wildlife browse its only localized commercial value. -
Cupressaceae Calocedrus Decurrens Incense Cedar
Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves -
Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus Orientalis (L.) Franco from South-Eastern Poland
Article Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree Platycladus orientalis (L.) Franco from South-Eastern Poland Agnieszka Laskowska * , Karolina Majewska, Paweł Kozakiewicz , Mariusz Mami ´nskiand Grzegorz Bryk The Institute of Wood Sciences and Furniture, 159 Nowoursynowska St., 02-776 Warsaw, Poland; [email protected] (K.M.); [email protected] (P.K.); [email protected] (M.M.); [email protected] (G.B.) * Correspondence: [email protected] Abstract: Oriental arborvitae is not fully characterized in terms of its microscopic structure or physical or mechanical properties. Moreover, there is a lot of contradictory information in the literature about oriental arborvitae, especially in terms of microscopic structure. Therefore, the sapwood (S) and heartwood (H) of Platycladus orientalis (L.) Franco from Central Europe were subjected to examinations. The presence of helical thickenings was found in earlywood tracheids (E). Latewood tracheids (L) were characterized by a similar thickness of radial and tangential walls and a similar diameter in the tangential direction in the sapwood and heartwood zones. In the case of earlywood tracheids, such a similarity was found only in the thickness of the tangential walls. The volume swelling (VS) of sapwood and heartwood after reaching maximum moisture content (MMC) was 12.8% (±0.5%) and 11.2% (±0.5%), respectively. The average velocity of ultrasonic Citation: Laskowska, A.; Majewska, waves along the fibers (υ) for a frequency of 40 kHz was about 6% lower in the heartwood zone K.; Kozakiewicz, P.; Mami´nski,M.; than in the sapwood zone. The dynamic modulus of elasticity (MOED) was about 8% lower in the Bryk, G. -
Guideline 410 Prohibited Plant List
VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C. -
Mants Availability Shrubs
FooterDate Co ProdCategory BotPlant A2 Price1 Price2 Price3 Perennials 1 to 24 25 to 49 50 & Up Achellia fillipendulina 'Coronation Gold' 1 Gal 286.00 5.00 4.25 3.50 Achellia fillipendulina 'Coronation Gold' Flat 54.00 26.00 23.00 20.00 Achillea millefolium 'Strawberry Seduction' 1 Gal 10.00 5.00 4.25 3.50 Andropogon ternarius 1 Gal 1,422.00 5.50 4.75 4.00 Asclepias tuberosa 1 Gal 473.00 5.00 4.25 3.50 Asclepias tuberosa Flat 30.00 26.00 23.00 20.00 Aster novae-angliae 'Purple Dome' 1 Gal 1,314.00 5.00 4.25 3.50 Aster novae-angliae 'Purple Dome' Flat 34.00 26.00 23.00 20.00 Athyrium 'Ghost' 1 Gal 368.00 5.50 4.75 4.00 Calamagrostis sp. 1 Gal 242.00 5.50 4.75 4.00 Calamagrostis x acutiflora 'Karl Foerester' 3 Gal 598.00 10.75 9.50 8.25 Carex comans Marginata 'Snowline' 1 Gal 898.00 6.25 5.50 4.75 Carex hachijoensis 'Evergold' 1 Gal 926.00 6.25 5.50 4.75 Carex morrovii 'Ice Dance' 1 Gal 1,197.00 6.25 5.50 4.75 Carex pensylvanica 1 Gal 91.00 6.25 5.50 4.75 Chasmanthium latifolium 1 Gal 1,550.00 5.50 4.75 4.00 Convallaria majalis 1 Gal 17.00 5.50 4.75 4.00 Coreopsis 'Moonbeam' 1 Gal 1,326.00 5.00 4.25 3.50 Crocosmia x crocosmiiflora 'Emily McKenzie' 1 Gal 10.00 5.00 4.25 3.50 Dicentra spectabilis 3 Gal 21.00 13.50 12.00 10.00 Dryopteris marginalis 1 Gal 854.00 5.50 4.75 4.00 Echinacea 'Pow Wow White' 1 Gal 220.00 5.00 4.25 3.50 Echinacea 'Pow wow Wild Berry' 1 Gal 1,920.00 5.00 4.25 3.50 Echinacea 'Pow wow Wild Berry' 2 Gal 72.00 8.50 7.25 6.00 Echinacea 'Pow wow Wild Berry' Flat 9.00 26.00 23.00 20.00 Echinacea purpurea 1 Gal 125.00 5.00 -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus). -
Tree Domestication and the History of Plantations - J.W
THE ROLE OF FOOD, AGRICULTURE, FORESTRY AND FISHERIES IN HUMAN NUTRITION – Vol. II - Tree Domestication and the History of Plantations - J.W. Turnbull TREE DOMESTICATION AND THE HISTORY OF PLANTATIONS J.W. Turnbull CSIRO Forestry and Forest Products, Canberra, Australia Keywords: Industrial plantations, protection forests, urban forestry, clonal forestry, forest management, tree harvesting, tree planting, monoculture, provenance, germplasm, silviculture, botanic gardens, arboreta, fuelwood, molecular biology, genetics, tropical rainforest, pulpwood, shelterbelts, rubber, pharmaceuticals, lumber, fruit trees, palm oil, Eucalyptus, farm forestry, dune stabilization, clear-cutting, religious ceremony Contents 1. Introduction 2. Origins of Planting 2.1. The Mediterranean Lands 2.2. Asia 3. Movement of Germplasm 3.1. Evidence of Early Transfers 3.2. Role of Botanic Gardens and Arboreta 3.3. Australian Tree Species and Their Transfer 3.4. North Asia as a Rich Source 4. Tree Domestication 4.1. Domestication by Indigenous Peoples 4.2. Selection and Breeding of Forest Trees 4.3. Forest Genetics 5. Plantations 6. Forest Plantations 1400–1900 6.1. European Experiences 6.2. Tropical Plantations 7. Plantations 1900–1950 8. Plantations 1950–2000 8.1. Global Overview 9. Protection Forests 10. Amenity Planting and Urban Forestry 11. Plantation Practices 11.1. TheUNESCO Mechanical Revolution – EOLSS 12. Sustainability of Plantations Glossary SAMPLE CHAPTERS Bibliography Biographical Sketch Summary Trees have been planted for thousands of years for food, wood, shelter, and religious purposes. The first woody plants to be cultivated were those yielding food, such as the olive. Trees were moved around the world by the Romans, Greeks, Chinese, and by others during military conquests. Voyages of discovery by European navigators to the ©Encyclopedia of Life Support Systems (EOLSS) THE ROLE OF FOOD, AGRICULTURE, FORESTRY AND FISHERIES IN HUMAN NUTRITION – Vol.