Malassezia: from Skin to Model Species

Total Page:16

File Type:pdf, Size:1020Kb

Malassezia: from Skin to Model Species 1 Program workshop Malassezia: from skin to model species July 4-6, 2018 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands How to get there http://www.westerdijkinstitute.nl/DefaultInfo.aspx?Page=ContactUs Organizers Teun Boekhout & Thomas Dawson ISHAM working group Malassezia, epidemiology and pathobiology & Malassezia Research Consortium Support 2 Wednesday afternoon, July 4 Theme Ecology, diversity and microbiome 14.00-14.30 Keynote Biodiversity and ecology of Malassezia species. F.J. Cabañes Universitat Autònoma de Barcelona, BELLATERRA, BARCELONA, Spain Malassezia species form a monophyletic group of basidiomycetous yeasts unique among the fungi. They are characterized to be lipophilic microorganisms which are associated to the human and animal skin. The genus was created by Baillon in 1889 and remained limited to only two species, M. furfur and M. pachydermatis, for over a century. Nowadays, the genus includes 17 species and new species are expected to be described in the coming years. Special morphological characteristics (e.g. colony and cell morphology) have been cited for some Malassezia spp. However, separation of Malassezia species on the basis of only morphological characteristics may be considered to be subjective or unreliable. Currently, the phenotypical characterization of these yeasts is based mainly on the evaluation of their ability to use certain polyoxyethylene sorbitan esters (Tweens 20, 40, 60 and 80) and Cremophor EL. However, difficulties remain in obtaining a high level of certainty in the identification of some lipid-dependent strains by means of physiological tests without molecular characterization. Although a genetic boundary between Malassezia species has been not clearly stated, the within-species “gold standard” D1/D2 sequence similarity is above 99% (<1% of dissimilarity). Other molecular markers (e.g. ITS region, CH2 and beta-tubulin genes) may be useful to achieve discrimination among the species of this group. On the other hand, genomics has become a promising methodology to infer phylogenetic relationships among these species. Minimal standards for the use of genome data in delineating new species in this group should be discussed. As far as the ecology of these yeasts is concerned, Malassezia species have been only isolated from mammals and some birds. Recent metagenomics studies showed that it was possible to detect the presence of Malassezia-similar genes in environmental DNA samples (e.g. nematodes, marine sponges, coral colonies, marine dinoflagellates). However, the presence of Malassezia cells have been not reported in these environmental studies. Consequently, the real identity of these yeasts detected by culture-independent techniques in these environmental habitats still remain unknown. 14.30-14.45 Malassezia in the environment A. Amend1, T.L. Dawson2, T. Boekhout3 1University of Hawaii Manoa, HONOLULU, USA 2Agency for Science, Technology and Research, Skin Research Institute Singapore, SINGAPORE, Singapore 3Westerdijk Fungal Biodiversity Institute, UTRECHT, Nederland Objectives: Until recently, yeasts of the basidiomycetous genus Malassezia were known mainly from skin of warm-blooded animals, including humans. In the laboratory they could be maintained on lipid supplemented media and when grown at temperatures of ca. 30°C. Recent DNA barcoding, however, detected the occurrence of these yeasts in unexpected habitats. Further they point to a large diversity of putatively undescribed species. Methods: Here we present an overview of results from various metabarcoding and metagenomics studies on the occurrence of Malassezia in various environmental habitats. Results: Presumed Malassezia DNA was detected in a wide diversity of habitats, including terrestrial, marine, and indoor environments. Moreover, it dominated the mycobiomes of animals like sponges, corals, nematodes, snails, and insects. Sequenced transcripts and ribosomal RNA indicate that Malassezia is actively functioning in at least some of these environments. Using ITS as a marker several novel phylogenetic lineages are found indicating that the existing number of species may be higher than presently know. Future studies may focus on addressing the functional role of the yeasts in such habitats, as well as in situ detection by e.g. FISH. 3 Conclusion: The diversity of Malassezia yeasts largely extends what is known from previous clinical studies. Combining environmental microbial community data from metagenomics studies with those obtained by functional genomics, and culturing and imaging Malassezia directly from these environments will provide insight in the environmental reservoir of Malassezia yeasts as well as their ecophysiology that also may contribute to our understanding of the human/animal host interactions. 14.45-15.00 Identification of Malassezia species in seborrheic dermatitis and fungal microbiota in androgenetic alopecia Y.P. Ran1, H. Zhang2, J.H. Huang2, X. Ran1 1West China Hospital, CHENGDU, China Objectives: Seborrheic dermatitis (SD) is a sub-acute or chronic superficial inflammatory skin condition, characterized by pruritic, erythematous plaques with greasy, yellow-gray scales,scales, which appear on areas rich in sebaceous glands such as the face, scalp, upper chest, and back. Androgenetic alopecia (AGA) is the most common cause of hair loss and affects up to 70% of men and 40% of women. Although genetic and environmental factors play a role, the causes of SD and AGA are complex and incompletely understood and the pathogenesis remains unclear. We explored Malassezia spp. composition in SD skin and fungal microbiota in AGA by non-culture based molecular identification. Methods: We analyzed Malassezia microflora in SD patients by applying a transparent dressing to the lesional skin and using direct detection of fungal DNA using nested PCR. We collected samples from the lesional skin of 146 SD patients in China and extracted fungal DNA directly from the lesional samples without culture. Specific primers for each Malassezia species were designed to amplify existing yeasts in each sample. Some samples were randomly selected to culture and identified by morphological and physiologic criteria. We focused on fungal microbiota of AGA: (1) pulling out the loose hair from the calvaria region (vulnerable to baldness) and occipital region (non-baldness) of AGA patients, to observe the fungus with microscope, SEM and TEM; (2) high- throughput sequencing and fluorescence quantification real-time PCR (QRT-PCR) combining the specific primers and probe of the Malassezia species to analyze the fungal micro-ecology. Results: M. globosa and M. restricta were found in 87.0 and 81.5 % of SD patients, respectively, which together accounted for more than 50 % of Malassezia spp. recovered in these Chinese patients. The majority of SD patients (82.9 %) showed co-colonization of two or more Malassezia species. The positive rate of Malassezia in 10 AGA patients (60%) was higher than 10 control (40%). SEM observed many Malassezia yeasts adhering and inserted to the surface of hair root, TEM proved the yeasts invaded into the fair follicle dermal root sheath. High-throughput sequencing the hair roots from AGA revealed Basidiomycota (61.03%), Ascomycota (35.58%), Zygomycota (0.40%) in calvaria region, and Basidiomycota (54.21%), Ascomycota (41.18%), Zygomycota (1.87%) in occipital region. In the control group, Basidiomycota (24.94%), Ascomycota (73.16%), Zygomycota (0.49%) revealed in calvaria region, and Basidiomycota (34.37%), Ascomycota (63.78%), Zygomycota (0.62%) in occipital region. The scalp scales by OpSiteTM sterile transparent sticking were detected with QRT-PCR. In AGA group, the constitute of M. globose (37%) and M. restricta (53%) in calvaria is significantly higher than in occipital region of M. globose (22%) and M. restricta (31%). In the control group no statistical difference existed. Conclusion: Our results indicated M. globosa and M. restricta predominated in Malassezia colonization in Chinese SD patients. Non-culture-based methods may more accurately reflect Malassezia microflora constitution. The pathogenicity of Malassezia to AGA is worth further investigation. 15.00-15.15 Socio-demographic characteristics and spectrum of Malassezia species in seborrhoeic dermatitis in urban and rural population of India S.M. Rudramurthy1, P. Honnavar2, A. Chakrabarti2, S. Dogra2, S. Handa2, P.V. M Lakshmi2 1Postgraduate institute of medical Education and Research, Chandigarh, CHANDIGARH, India 4 2PGIMER, CHANDIGARH, India Objectives: Seborrheic dermatitis/dandruff (SD/D) is a common, persistent, relapsing inflammatory condition affecting the areas rich in sebaceous glands. Though cases of SD/D are widely prevalent in India, Malassezia species implicated are not well studied. The aim of our study was to estimate the prevalence and spectrum of Malassezia species in patients with SD/D in north India. Methods: Two hundred SD/D patients and 100 healthy controls from both rural and urban background of north India were enrolled. SD/D severity was clinically graded as mild, moderate, severe and very severe. The isolates were identified by phenotypic characters and confirmed by ITS2 PCR-RFLP band pattern and sequencing of ITS region of rDNA. Results: Severe (59%) and very severe (71%) form of SD/D was higher in the rural population compared to urban population (p=0.004). Isolation rate of Malassezia was significantly higher in overall SD/D patients scalp (82%) compared to healthy controls
Recommended publications
  • Cronicon OPEN ACCESS MICROBIOLOGY Editorial from Head to Toe: Mapping Fungi Across Human Skin
    Cronicon OPEN ACCESS MICROBIOLOGY Editorial From Head to Toe: Mapping Fungi across Human Skin Tim Sandle* Head of Microbiology, Bio Products Laboratory Limited, United Kingdom *Corresponding Author: Tim Sandle, Head of Microbiology, Bio Products Laboratory Limited, 68 Alexander Road, London Colony, St. Albans, Hertfordshire, United Kingdom. Received: July 09, 2015; Published: July 14, 2015 Introduction The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term mirobiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project [1]. This required sophisticated analysis and representative sampling, given thatThe a single collected square of centimeter data from theof human Human skin Microbiome can contain Project up to hasone enabledbillion microorganisms. microbiologists to develop an ecological map of the human relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our under body, both inside and outside. Many of the findings have extended, or even turned upside down, what was previously known about the - not correlate; some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer associa standing about fungal types, locations and numbers and how this affects health and disease [2]. With this fungal and bacteria diversity do tion with feet. This article reviews some of the more recent literature.
    [Show full text]
  • Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut
    ■ CLINICAL REVIEW Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut Tinea versicolor (pityriasis versicolor) is a common imidazole, has been used for years both orally and top­ superficial fungal infection of the stratum corneum. ically with great success, although it has not been Caused by the fungus Malassezia furfur, this chronical­ approved by the Food and Drug Administration for the ly recurring disease is most prevalent in the tropics but indication of tinea versicolor. Newer derivatives, such is also common in temperate climates. Treatments are as fluconazole and itraconazole, have recently been available and cure rates are high, although recurrences introduced. Side effects associated with these triazoles are common. Traditional topical agents such as seleni­ tend to be minor and low in incidence. Except for keto­ um sulfide are effective, but recurrence following treat­ conazole, oral antifungals carry a low risk of hepato- ment with these agents is likely and often rapid. toxicity. Currently, therapeutic interest is focused on synthetic Key Words: Tinea versicolor; pityriasis versicolor; anti­ “-azole” antifungal drugs, which interfere with the sterol fungal agents. metabolism of the infectious agent. Ketoconazole, an (J Fam Pract 1996; 43:127-132) ormal skin flora includes two morpho­ than formerly thought. In one study, children under logically discrete lipophilic yeasts: a age 14 represented nearly 5% of confirmed cases spherical form, Pityrosporum orbicu- of the disease.3 In many of these cases, the face lare, and an ovoid form, Pityrosporum was involved, a rare manifestation of the disease in ovale. Whether these are separate enti­ adults.1 The condition is most prevalent in tropical tiesN or different morphologic forms in the cell and semitropical areas, where up to 40% of some cycle of the same organism remains unclear.: In the populations are affected.
    [Show full text]
  • The Role of Malassezia Spp. in Atopic Dermatitis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 The role of Malassezia spp. in atopic dermatitis Glatz, Martin ; Bosshard, Philipp P ; Hoetzenecker, Wolfram ; Schmid-Grendelmeier, Peter Abstract: Malassezia spp. is a genus of lipophilic yeasts and comprises the most common fungi on healthy human skin. Despite its role as a commensal on healthy human skin, Malassezia spp. is attributed a pathogenic role in atopic dermatitis. The mechanisms by which Malassezia spp. may contribute to the pathogenesis of atopic dermatitis are not fully understood. Here, we review the latest findings on the pathogenetic role of Malassezia spp. in atopic dermatitis (AD). For example, Malassezia spp. produces a variety of immunogenic proteins that elicit the production of specific IgE antibodies and may induce the release of pro-inflammatory cytokines. In addition, Malassezia spp. induces auto-reactive T cells that cross-react between fungal proteins and their human counterparts. These mechanisms contribute to skin inflammation in atopic dermatitis and therefore influence the course of this disorder. Finally, wediscuss the possible benefit of an anti-Malassezia spp. treatment in patients with atopic dermatitis. DOI: https://doi.org/10.3390/jcm4061217 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113025 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Glatz, Martin; Bosshard, Philipp P; Hoetzenecker, Wolfram; Schmid-Grendelmeier, Peter (2015). The role of Malassezia spp.
    [Show full text]
  • Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
    REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy.
    [Show full text]
  • Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast
    Journal of Fungi Communication Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast Abdourahim Abdillah 1,2, Saber Khelaifia 2, Didier Raoult 2,3, Fadi Bittar 2,3 and Stéphane Ranque 1,2,* 1 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; [email protected] 2 IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005 Marseille, France; khelaifi[email protected] (S.K.); [email protected] (D.R.); [email protected] (F.B.) 3 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, MEPHI: Microbes, Evolution, Phylogénie et Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France * Correspondence: [email protected] Received: 5 October 2020; Accepted: 27 November 2020; Published: 9 December 2020 Abstract: Malassezia is a lipid-dependent commensal yeast of the human skin. The different culture media and skin sampling methods used to grow these fastidious yeasts are a source of heterogeneity in culture-based epidemiological study results. This study aimed to compare the performances of three methods of skin sampling, and two culture media for the detection of Malassezia yeasts by culture from the human skin. Three skin sampling methods, namely sterile gauze, dry swab, and TranswabTM with transport medium, were applied on 10 healthy volunteers at 5 distinct body sites. Each sample was further inoculated onto either the novel FastFung medium or the reference Dixon agar for the detection of Malassezia spp.
    [Show full text]
  • Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
    UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1).
    [Show full text]
  • Malassezia Baillon, Emerging Clinical Yeasts
    FEMS Yeast Research 5 (2005) 1101–1113 www.fems-microbiology.org MiniReview Malassezia Baillon, emerging clinical yeasts Roma Batra a,1, Teun Boekhout b,*, Eveline Gue´ho c, F. Javier Caban˜es d, Thomas L. Dawson Jr. e, Aditya K. Gupta a,f a Mediprobe Research, London, Ont., Canada b Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 85167 Utrecht, The Netherlands c 5 rue de la Huchette, F-61400 Mauves sur Huisne, France d Departament de Sanitat i dÕ Anatomia Animals, Universitat Auto`noma de Barcelona, Bellaterra, Barcelona E-08193, Spain e Beauty Care Technology Division, Procter & Gamble Company, Cincinnati, USA f Division of Dermatology, Department of Medicine, Sunnybrook and WomenÕs College Health Science Center (Sunnybrook site) and the University of Toronto, Toronto, Ont., Canada Received 1 November 2004; received in revised form 11 May 2005; accepted 18 May 2005 First published online 12 July 2005 Abstract The human and animal pathogenic yeast genus Malassezia has received considerable attention in recent years from dermatolo- gists, other clinicians, veterinarians and mycologists. Some points highlighted in this review include recent advances in the techno- logical developments related to detection, identification, and classification of Malassezia species. The clinical association of Malassezia species with a number of mammalian dermatological diseases including dandruff, seborrhoeic dermatitis, pityriasis ver- sicolor, psoriasis, folliculitis and otitis is also discussed. Ó 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Malassezia; Yeast; Identification; Animals; Disease 1. Introduction a positive staining reaction with Diazonium Blue B (DBB) [3]. The genus was named in 1889 by Baillon Members of the genus Malassezia are opportunistic [6] with the species M.
    [Show full text]
  • Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S Rdna PCR-RFLP Analysis
    Ann Dermatol Vol. 23, No. 2, 2011 DOI: 10.5021/ad.2011.23.2.177 ORIGINAL ARTICLE Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis Jong Hyun Ko, M.D., Yang Won Lee, M.D., Yong Beom Choe, M.D., Kyu Joong Ahn, M.D. Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea Background: So far, studies on the inter-relationship -Keywords- between Malassezia and Malassezia folliculitis have been 26S rDNA PCR-RFLP, Malassezia folliculitis, Malassezia rather scarce. Objective: We sought to analyze the yeasts differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. INTRODUCTION Methods: Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from Malassezia folliculitis, as with seborrheic dermatitis, the normal skin of 60 age- and gender-matched healthy affects sites where there is an enhanced activity of controls by 26S rDNA PCR-RFLP. Results: M. restricta was sebaceous glands such as the face, upper trunk and dominant in the patients with Malassezia folliculitis (20.6%), shoulders. These patients often present with mild pruritus while M. globosa was the most common species (26.7%) in or follicular rash and pustules without itching1,2. It usually the controls. The rate of identification was the highest in the occurs in the setting of immuno-suppression such as the teens for the patient group, whereas it was the highest in the use of steroids or other immunosuppressants, chemo- thirties for the control group.
    [Show full text]
  • Fungal-Bacterial Interactions in Health and Disease
    pathogens Review Fungal-Bacterial Interactions in Health and Disease 1, 1, 1,2 1,2,3 Wibke Krüger y, Sarah Vielreicher y, Mario Kapitan , Ilse D. Jacobsen and Maria Joanna Niemiec 1,2,* 1 Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena 07745, Germany; [email protected] (W.K.); [email protected] (S.V.); [email protected] (M.K.); [email protected] (I.D.J.) 2 Center for Sepsis Control and Care, Jena 07747, Germany 3 Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany * Correspondence: [email protected]; Tel.: +49-3641-532-1454 These authors contributed equally to this work. y Received: 22 February 2019; Accepted: 16 May 2019; Published: 21 May 2019 Abstract: Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host. Keywords: mycobiome; microbiome; cross-kingdom interactions; polymicrobial; commensals; synergism; antagonism; mixed infections 1. Introduction 1.1. Origins of Microbiota Research Fungi and bacteria are found on all mucosal epithelial surfaces of the human body. After their discovery in the 19th century, for a long time the presence of microbes was thought to be associated mostly with disease.
    [Show full text]
  • Oral Colonization of Malassezia Species Anibal Cardenas [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 7-5-2018 Oral Colonization of Malassezia species Anibal Cardenas [email protected] Recommended Citation Cardenas, Anibal, "Oral Colonization of Malassezia species" (2018). Master's Theses. 1249. https://opencommons.uconn.edu/gs_theses/1249 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Oral Colonization of Malassezia species Anibal Cardenas D.D.S., University of San Martin de Porres, 2006 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Dental Science At the University of Connecticut 2018 Copyright by Anibal Cardenas 2018 ii APPROVAL PAGE Master of Dental Science Thesis Oral Colonization of Malassezia species Presented by Anibal Cardenas, D.D.S. Major Advisor________________________________________________________ Dr. Patricia I. Diaz, D.D.S., M.Sc., Ph.D. Associate Advisor_____________________________________________________ Dr. Anna Dongari-Bagtzoglou, D.D.S., M.S., Ph.D. Associate Advisor_____________________________________________________ Dr. Upendra Hegde M.D. University of Connecticut 2018 iii OUTLINE 1. Introduction 1.1. Oral microbiome 1.2. Oral mycobiome 1.3. Association of oral mycobiome and disease 1.4. Biology of the genus Malassezia 1.5. Rationale for this study 1.6. Hypothesis 2. Objectives 2.1 Specific aims 3. Study design and population 3.1. Inclusion and exclusion criteria 3.1.1. Inclusion criteria 3.1.2. Exclusion criteria 3.2. Clinical study procedures and sample collection 3.2.1.
    [Show full text]
  • Mycology Proficiency Testing Program
    Mycology Proficiency Testing Program Test Event Critique January 2013 Mycology Laboratory Table of Contents Mycology Laboratory 2 Mycology Proficiency Testing Program 3 Test Specimens & Grading Policy 5 Test Analyte Master Lists 7 Performance Summary 11 Commercial Device Usage Statistics 15 Mold Descriptions 16 M-1 Exserohilum species 16 M-2 Phialophora species 20 M-3 Chrysosporium species 25 M-4 Fusarium species 30 M-5 Rhizopus species 34 Yeast Descriptions 38 Y-1 Rhodotorula mucilaginosa 38 Y-2 Trichosporon asahii 41 Y-3 Candida glabrata 44 Y-4 Candida albicans 47 Y-5 Geotrichum candidum 50 Direct Detection - Cryptococcal Antigen 53 Antifungal Susceptibility Testing - Yeast 55 Antifungal Susceptibility Testing - Mold (Educational) 60 1 Mycology Laboratory Mycology Laboratory at the Wadsworth Center, New York State Department of Health (NYSDOH) is a reference diagnostic laboratory for the fungal diseases. The laboratory services include testing for the dimorphic pathogenic fungi, unusual molds and yeasts pathogens, antifungal susceptibility testing including tests with research protocols, molecular tests including rapid identification and strain typing, outbreak and pseudo-outbreak investigations, laboratory contamination and accident investigations and related environmental surveys. The Fungal Culture Collection of the Mycology Laboratory is an important resource for high quality cultures used in the proficiency-testing program and for the in-house development and standardization of new diagnostic tests. Mycology Proficiency Testing Program provides technical expertise to NYSDOH Clinical Laboratory Evaluation Program (CLEP). The program is responsible for conducting the Clinical Laboratory Improvement Amendments (CLIA)-compliant Proficiency Testing (Mycology) for clinical laboratories in New York State. All analytes for these test events are prepared and standardized internally.
    [Show full text]
  • In Vitro Activity of Phytosphingosines Against Malassezia Furfur and Candida Albicans*
    Acta Derm Venereol 2002; 82: 170–173 INVESTIGATIVE REPORT In vitro Activity of Phytosphingosines against Malassezia furfur and Candida albicans* PIETRO NENOFF and UWE-FRITHJOF HAUSTEIN Department of Dermatology, University of Leipzig, Leipzig, Germany Long-chain sphingoid bases, e.g. phytosphingosine , sphin- metabolic changes: the phospholipids are degradaded gosine and sphinganine, main constituents of the stratum into glycerol and free fatty acids, and glucosylsphingo- corneum, can strongly inhibit the growth of microorgan- lipids into ceramides (2). isms that are known to have undesirable eVects on the Long chain sphingoid bases, e.g. phytosphingosines skin. The aim of this study was to investigate the in vitro (PS), sphingosines, and sphinganines are known to be activity of diVerent phytosphingosine preparations against present in the stratum corneum in free form but also as Malassezia furfur, and, in comparison, against the components of ceramides. These molecules are potent common facultative pathogenic yeast Candida albicans. inhibitors of protein kinase C and as a consequence An agar dilution test for minimum inhibitory concentration they seem to be involved in the diVerentiation of epi- (MIC ) investigation of phytosphingosin e base, phyto- dermal keratinocytes. There are also reports suggesting sphingosine lactic acid salt, phytosphingosine HCl, and that sphingoid bases play an important role in regulating phytosphingosin e glycolic acid salt was carried out using the micro- ora of the skin. D.S.T. agar containing 2% olive oil and 0.2% Tween 80, It was shown that PS, the most abundant free sphin- to allow growth of the lipophilic yeast. M. furfur growth goid base in the stratum corneum, could strongly inhibit inhibition in vitro could be achieved only at extremely the growth of microorganisms which are known to have high phytosphingosin e concentrations.
    [Show full text]