Acute Toxicity of Carbaryl, Methiocarb, And

Total Page:16

File Type:pdf, Size:1020Kb

Acute Toxicity of Carbaryl, Methiocarb, And Turk.J.Vet.Anim.Sci. 2007;31(1):39-45 ©TÜB‹TAK ResearchArticle AcuteToxicityofCarbaryl,Methiocarb,andCarbosulfan totheRainbowTrout(Oncorhynchusmykiss)andGuppy (Poeciliareticulata) MuhammetBORAN*,‹lhanALTINOK,ErolÇAPKIN,HikmetKARAÇAM,VeyselB‹ÇER FacultyofMarineSciences,KaradenizTechnicalUniversity,61530Sürmene,Trabzon-TURKEY Received:31.01.2006 Abstract: Theacutetoxicityofcarbaryl,methiocarbandcarbosulfantojuvenilerainbowtrout( Oncorhynchusmykiss;1.92±0.5 g)andguppies(Poeciliareticulata;0.45±0.04g)wasevaluatedin96-htoxicitytestsunderstaticconditions.Concentrationsinthe toxicitytestrangedfrom0.85to8.5mg/lforcarbaryl,from0.7to28.0mg/lformethiocarb,andfrom0.031to12.5mg/lfor carbosulfan.Carbarylandmethiocarbweremoretoxictorainbowtroutthantoguppies.However,comparedwithrainbowtrout, guppiesweremoresensitivetocarbosulfan.Theincidenceofmortalityinfishincreasedsignificantly(P<0.05)withincreasi ng pesticideconcentrations.Thetimerequiredtokill50%(LT 50)oftherainbowtroutatthelowestconcentrationsofcarbaryl, methiocarb,andcarbosulfanwas51h12min,74h35min,and107h57min,respectively.Asinsecticideconcentrationswere increased,LT50 valuesdecreased(P<0.05). KeyWords: Acutetoxicitytest,carbamate,pesticides,rainbowtrout,guppies Karbaril,MetiyokarbveKarbosülfan’›nGökkufla¤›Alabal›¤›( Oncorhynchusmykiss)veLepistes (Poeciliareticulata)Bal›klar›ÜzerineAkutToksikEtkileri Özet: Karbaril,metiyokarbvekarbosülfanaktifmaddeleriniiçereninsektisitleringökkufla¤›alabal›klar›(Oncorhynchusmykiss;1,92 ±0,5g)velepistesbal›klar›( Poeciliareticulata ;0,45±0,04g)üzerine,akuttoksiketkileri,statiktestyöntemi(96saatlik) kullan›larakbelirlenmifltir.Testçözeltilerindekinominalinsektisitmiktarlar›karbariliçin0,85-8,5mg/l,metiyokarbiçin0 ,7-28,0 mg/lvekarbosülfaniçin0,031-12,5mg/lolacakflekildeayarlanm›flt›r.Karbarilvemetiyokarb›ngökkufla¤›alabal›klar›üzerinetoksik etkilerinin,lepistesbal›klar›nagöredahafazlaoldu¤utespitedilmifltir.Ancaklepistesbal›klar›n›nkarbosülfanaktifmadde sinekarfl›, alabal›klaragöredahahassasolduklar›belirlenmifltir.Testedilenbal›klardakiölümoranlar›n›n,akvaryumlardakiçözeltileri çersinde bulunanaktifmaddelerinkonsantrasyonunaba¤l›olarakönemliderecede(P<0,05)artt›¤›saptanm›flt›r.Endüflükkarbaril, metiyokarbvekarbosülfankonsantrasyonlar›namaruzb›rak›langökkufla¤›alabal›klar›n›n%50’sininölmesiiçingerekenzaman s›ras›yla51saat12dakika,74saat35dakikave107saat57dakikaolaraktespitedilmifltir.‹nsektisitkonsantrasyonuartt›kçaLT50 de¤erinindüfltü¤ügörülmüfltür(P<0,05). AnahtarSözcükler: Akuttoksisitetesti,karbamat,pestisit,gökkufla¤›alabal›¤›,lepistes Introduction environment,andtheytendnottobioaccumulate. Carbamatepesticidesareusedwidelyforagricultural However,carbamatepesticidesaretoxictonon-targeted andresidentialapplicationsasinsecticidesandfungicides. wildlifeandfishandbirdsappeartobethemoresensitive Theirworldwideannualuseisestimatedtorangefrom thanmammalstothesepesticides(1). 20,000to35,000t.Thisfamilyofchemicalsreplacedthe Thecarbamateesterderivativesusedasinsecticides organochlorinepesticides,whichhavebeenbanned aregenerallystableandhavealowvaporpressureand throughouttheworld.Unlikeorganochlorinepesticides, lowwatersolubility.Althoughcarbamatesarenotvery carbamateinsecticidesdonotpersistlonginthe stableunderaquaticconditionsandwillnotpersistlong *E-mail:[email protected] 39 AcuteToxicityofCarbaryl,Methiocarb,andCarbosulfantotheRainbowTrout( Oncorhynchusmykiss)andGuppy(Poeciliareticulata) intheenvironment,bioaccumulationtosomeextent MaterialsandMethods occursinfishduemainlytotheirslowmetabolism(2). ExperimentalAnimals Pesticidesthataresolubleinwaterareeasilytransported intosurfacewaters.Pesticidesadsorbedintosoilparticles Rainbowtrout(Oncorhynchusmykiss;1.92±0.5g) canbecarriedfromapplicationsitesonsediment.The wereobtainedfromKTU,FacultyofMarineSciences, runoffwatercandissolvetheactiveingredients,which ResearchFacilityinTrabzon,Turkey.Thefishwere aresubsequentlytransportedtounintendedsites.Either acclimatedtolaboratoryconditionsinflowthrough dissolvedinwaterorcarriedbysediment,pesticidesthat fiberglasstank(100l)underanaturalphotoperiodfor2 arecarriedoff-sitecancontaminatesurfacewaters(3,4). weeks.Duringtheacclimationperiod,thefishwerefed5 timesadaywithcommercialfishfeedat5%body Otherthantargetedpests,insecticidescanaffectnon- weight.Guppies(Poeciliareticulata;0.45±0.04g)were targetedspeciessuchasaquaticanimals.Ingeneral, obtainedfromalocalfishstoreandacclimatedto methiocarbismoderatelytoxictoaquaticorganismsand laboratoryconditionsinglassaquaria(50l)filledwith thetoxicdosedependsonspecies(5).Thetoxicityof agedtapwaterunderanaturalphotoperiodfor2weeks. carbamatesubstancesresultsprimarilyfrominhibitionof Thefishwerefedtwiceadaywithcommercialflakesand acetylcholinesterase(AChE),akeyenzymeofthenervous onceaweekwithDaphnia sp. system.Theinhibitioncausesanaccumulationof ExperimentalDesign acetylcholineinsynapseswithdisruptionofthenerve Afteracclimation,therainbowtroutwererandomly function,whichcanresultindeath(6). transferredto20-laquariaandtheguppiesto5-laquaria. Therearelimitednumbersofstudiescomparingthe Theexperimentswereperformedinstaticwater(10fish acutetoxicityofcarbaryl,carbosulfanandmethiocarbin peraquarium).Testsolutionswerepreparedfrom variousfishes,whileinformationonthemechanismsof commercialformulations(BayerCropScienceAG, toxicitytodifferentfishspecieshasbeenreportedoften Frankfurt,Germany)containing85%(activeingredient) (2,6).Carbarylcancauseadecreaseintheliverglutamine carbaryl,50%methiocarb,and25%carbosulfan.The level(7),andadecreaseinthenumberofleukocytesin concentrationstestedforcarbarylwere0(control),0.85, Gorragothylagothyla (8).Incarbaryltoxicity, 1.53,2.72,4.76,and8.5mg/l.Themethiocarb characteristicbehavioralchangesassociatedwithchanges concentrationswere0(control),0.7,1.4,2.8,5.0,9.0, inphysiologicalparametersinducedbycarbarylexposure 16.0,and28.0mg/l.Therainbowtroutwerenotexposed canbeseen.Histologically,methiocarb-exposedfishhad to0.7or1.4mg/lmethiocarb.Theconcentrationstested forcarbosulfanwere0(control),0.125,0.625,1.25, lamellaredema,separationofepidermisfromlamellae, 6.25,12.5mg/lforrainbowtrout,withadditional0.031 lamellarfusion,telangiectasis,swellingoftheepithelial and0.063mg/ltreatmentsforguppies.Triplicateaquaria cellsandincreasedcytoplasmicgranularity.Gillsalsohad weredesignatedforeachconcentration.Carbaryland scatteredareasoffocallamellarhyperplasia.Methiocarb- methiocarbweredissolvedin10mlofethanol,andthen exposedfishhadnecrosisbetweenthemolecularand addedtotheaquaria.Thecontroltanksreceived10mlof granularlayerofcerebellumwherePurkinjecellsare distilledwater.Sincecarbosulfanwasanemulsifiable present(9). concentrate,itwasdirectlyaddedtotheaquaria.This Thepresentstudysoughttodeterminetheacute studywasconductedunderOECDGuidelineNo.203 toxicityofcommonlyusedpesticidescarbaryl, understatictestconditions(10).Duringthe96-hacute methiocarb,andcarbosulfantorainbowtrout toxicityexperiment,thewaterineachaquariumwas (Oncorhynchusmykiss )andguppies( Poeciliareticulata ) aeratedandhadthefollowingcharacteristicsforrainbow usingastatictestsystem.Asstudiesonthelethaltimes trout:dissolvedoxygen9.40±0.3mg/l,temperature 15.3±0.9°C,pH7.40±0.21,totalhardness99±5 ofcarbaryl,methiocarb,andcarbosulfanforrainbow mg/lasCaCO ,andalkalinity87±3mg/lasCaCO .The troutandguppyintheliteraturearelimited,theother 3 3 watercharacteristicsfortheguppiesweredissolved objectiveofthisstudywastodeterminetheacutetoxicity oxygen8.58±0.2mg/l,temperature21±0.5°C,pH ofcarbaryl,methiocarb,andcarbosulfanconcentrationto 7.35±0.11,totalhardness95±1mg/lasCaCO ,and rainbowtroutandguppiesover96h. 3 40 M.BORAN,‹.ALTINOK,E.ÇAPKIN,H.KARAÇAM,V.B‹ÇER alkalinity75±2mg/lasCaCO 3.Fishwereconsidered exposure.Thetoxicityofcarbaryl,methiocarb,and deadwhengilloperculaandbodymovementceased,and carbosulfantorainbowtroutandguppiesincreasedwith thedeadfishwereremovedimmediately.Theincidenceof increasingpesticideconcentrationanddurationof fishmortalitywasrecorded0,2,3,4,5,6,7,8,9,10, exposure.Carbarylandmethiocarbwerefoundtobe 11,12,24,36,48,60,72,84,and96hafterexposure moretoxictorainbowtroutthantoguppies,while toinsecticides. guppiesweremoresusceptibletocarbosulfanthan WaterQuality rainbowtrout(Tables1-4).Themortalityrateinfish increasedsignificantlywithincreasingconcentrationsof Duringexposuretocarbamateinsecticideswater pesticides.Thecarbarylconcentrationslethalto50%of qualitycharacteristics(temperature,dissolvedoxygen, therainbowtroutwere1.28mg/l(24h),1.14mg/l(48 pH,totalhardness,andalkalinity)ineachtreatmentwere h),1.02mg/l(72h),and0.85mg/l(96h)(Table1). measureddaily.Totalhardnessandtotalalkalinitywere measuredbytitration(11).Temperatureanddissolved Afterexposingrainbowtrouttodifferent oxygenconcentrationsweredeterminedwithanYSIB51 concentrationsofinsecticidesfor24h,theconcentrations polarographicoxygenmeter,andthermistor(Yellow lethalto10%(LC10)and90%(LC90)differedbyafactor SpringInstrument,YellowSpring,Ohio,USA).WaterpH of2.06,2.06,and9.83forcarbaryl,methiocarband wasdeterminedwithaglasselectrode(ThermoOrion, carbosulfan,respectively(Table1).LC 10 valuesof Beverly,Massachusetts,USA). carbarylwere5.88times,ofmethiocarbwere4.95 times,andofcarbosulfanwere3.32timeshigherthan StatisticalAnalyses theLC 90 valuesforguppies(Table3).Therewere Statisticaltestanalysiswasdescribedpreviouslyby significantdifferencesinnumbersofdeadfishbetween Altinok(12).Briefly,theconcentrationofinsecticidesand thedurationof1and96hineachconcentration(P< lethaltimevaluesestimatedtokill10%,50%,and90% 0.05).Thehighestconcentrationofinsecticidescaused ofrainbowtroutandguppieswithin6(6-hLC50),12,24, thehighestfishmortality.Significantdifferenceswere
Recommended publications
  • Cypermethrin
    International Environmental Health Criteria 82 Cypermethrin Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization WORLD HEALTH ORGANIZATION GENEVA 1989 Other titles available in the ENVIRONMENTAL HEALTH CRITERIA series include: 1. Mercury 2. Polychlorinated Biphenyls and Terphenyls 3. Lead 4. Oxides of Nitrogen 5. Nitrates, Nitrites, and N-Nitroso Compounds 6. Principles and Methods for Evaluating the Toxicity of Chemicals, Part 1 7. Photochemical Oxidants 8. Sulfur Oxides and Suspended Particulate Matter 9. DDT and its Derivatives 10. Carbon Disulfide 11. Mycotoxins 12. Noise 13. Carbon Monoxide 14. Ultraviolet Radiation 15. Tin and Organotin Compounds 16. Radiofrequency and Microwaves 17. Manganese 18. Arsenic 19. Hydrogen Sulfide 20. Selected Petroleum Products 21. Chlorine and Hydrogen Chloride 22. Ultrasound 23. Lasers and Optical Radiation 24. Titanium 25. Selected Radionuclides 26. Styrene 27. Guidelines on Studies in Environmental Epidemiology 28. Acrylonitrile 29. 2,4-Dichlorophenoxyacetic Acid (2,4-D) 30. Principles for Evaluating Health Risks to Progeny Associated with Exposure to Chemicals during Pregnancy 31. Tetrachloroethylene 32. Methylene Chloride 33. Epichlorohydrin 34. Chlordane 35. Extremely Low Frequency (ELF) Fields 36. Fluorine and Fluorides 37. Aquatic (Marine and Freshwater) Biotoxins 38. Heptachlor 39. Paraquat and Diquat 40. Endosulfan 41. Quintozene 42. Tecnazene 43. Chlordecone 44. Mirex continued on p. 156
    [Show full text]
  • Exposure of Phlebotomus Argentipes to Alpha-Cypermethrin, Permethrin, and DDT Using CDC Bottle Bioassays to Assess Insecticide Susceptibility
    Utah State University DigitalCommons@USU Undergraduate Honors Capstone Projects Honors Program 5-2020 Exposure of Phlebotomus Argentipes to Alpha-Cypermethrin, Permethrin, and DDT Using CDC Bottle Bioassays to Assess Insecticide Susceptibility Jacob Rex Andersen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/honors Part of the Biology Commons Recommended Citation Andersen, Jacob Rex, "Exposure of Phlebotomus Argentipes to Alpha-Cypermethrin, Permethrin, and DDT Using CDC Bottle Bioassays to Assess Insecticide Susceptibility" (2020). Undergraduate Honors Capstone Projects. 485. https://digitalcommons.usu.edu/honors/485 This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@USU. It has been accepted for inclusion in Undergraduate Honors Capstone Projects by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. © 2020 Jacob Rex Andersen All Rights Reserved i Abstract Background: Insecticide resistance for sand flies is a concern since sand flies are vectors for Leishmania spp. parasites which cause leishmaniasis affecting millions of people each year. The CDC bottle bioassay is used to assess resistance by comparing known insecticide diagnostic doses and diagnostic times from an insecticide-susceptible population. The objective of this study was to determine diagnostic doses and diagnostic times for α-cypermethrin and the lethal dose for 50% and 90% mortality for α- cypermethrin, permethrin, and DDT for Phlebotomus argentipes. Methods: The CDC bottle bioassays were performed in 1,000 mL glass bottles with 15- 25 sand flies from a laboratory strain of insecticide-susceptible P. argentipes. A range of concentrations of α-cypermethrin, permethrin, and DDT were evaluated.
    [Show full text]
  • 4. Chemical and Physical Information
    PYRETHRINS AND PYRETHROIDS 131 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY The naturally-occurring pyrethrins, extracted from chrysanthemum flowers, are esters of chrysanthemic acid (Pyrethrin I, Cinerin I, and Jasmolin I) and esters of pyrethric acid (Pyrethrin II, Cinerin II, and Jasmolin II). In the United States, the pyrethrum extract is standardized as 45–55% w/w total pyrethrins. The typical proportion of Pyrethrins I to II is 0.2:2.8, while the ratio of pyrethrins:cinerins:jasmolins is 71:21:7 (Tomlin 1997). Information regarding the chemical identity of the pyrethrins is presented in Table 4-1. Pyrethroids are synthetic esters derived from the naturally-occurring pyrethrins. One exception to the axiom that all pyrethroids are esters of carboxylic acids is noteworthy. There is a group of oxime ethers that exhibits insecticidal activity similar in nature to the pyrethrins and pyrethroid esters (Davies 1985). Little data exist regarding these compounds, and no commercial products have been produced. Commercially available pyrethroids include allethrin, bifenthrin, bioresmethrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate (fenvalerate), flucythrinate, flumethrin, fluvalinate, fenpropathrin, permethrin, phenothrin, resmethrin, tefluthrin, tetramethrin, and tralomethrin. Information regarding the chemical identity of pyrethroids is shown in Table 4-2. With the exception of deltamethrin, pyrethroids are a complex mixture of isomers rather than one single pure compound. For pyrethroids possessing the cyclopropane moiety, isomerism about the cyclopropane ring greatly influences the toxicity of these insecticides. The presence of two chiral centers in the ring results in two pairs of diastereomers. The diastereomers and their nonsuperimposable mirror images (enantiomers) are illustrated in Figure 4-1.
    [Show full text]
  • Interim Review of Chlorfenvinphos
    National Registration Authority for Agricultural and Veterinary Chemicals Section 3 AGRICULTURAL ASSESSMENT 1. INTRODUCTION........................................................................................................................ 6 1.1 Registration Status...................................................................................................................... 6 1.2 Methods of Application.............................................................................................................. 8 1.3 Permits..................................................................................................................................... 11 1.4 Performance Questionnaires ..................................................................................................... 11 2. EFFICACY ASSESSMENT....................................................................................................... 16 2.1 Background ............................................................................................................................. 16 2.2 Evaluation of Efficacy............................................................................................................... 16 2.3 Alternatives.............................................................................................................................. 16 2.4 Side Effects.............................................................................................................................. 18 2.5 Resistance Management ..........................................................................................................
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Code Chemical P026 1-(O-Chlorophenyl)Thiourea P081 1
    Code Chemical P026 1-(o-Chlorophenyl)thiourea P081 1,2,3-Propanetriol, trinitrate (R) P042 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)- P067 1,2-Propylenimine P185 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)- carbonyl]oxime 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa- chloro-1,4,4a,5,8,8a,-hexahydro-, P004 (1alpha,4alpha, 4abeta,5alpha,8alpha,8abeta)- 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa- chloro-1,4,4a,5,8,8a-hexahydro-, P060 (1alpha,4alpha, 4abeta,5beta,8beta,8abeta)- P002 1-Acetyl-2-thiourea P048 2,4-Dinitrophenol P051 2,7:3,6-Dimethanonaphth [2,3-b]oxirene, 3,4,5,6,9,9 -hexachloro-1a,2,2a,3,6,6a,7,7a- octahydro-, (1aalpha,2beta,2abeta,3alpha,6alpha,6abeta,7 beta, 7aalpha)-, & metabolites 2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9- hexachloro-1a,2,2a,3,6,6a,7,7a- P037 octahydro-, (1aalpha,2beta,2aalpha,3beta,6beta,6aalpha,7 beta, 7aalpha)- P045 2-Butanone, 3,3-dimethyl-1-(methylthio)-, O-[methylamino)carbonyl] oxime P034 2-Cyclohexyl-4,6-dinitrophenol 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1- phenylbutyl)-, & salts, when present at P001 concentrations greater than 0.3% P069 2-Methyllactonitrile P017 2-Propanone, 1-bromo- P005 2-Propen-1-ol P003 2-Propenal P102 2-Propyn-1-ol P007 3(2H)-Isoxazolone, 5-(aminomethyl)- P027 3-Chloropropionitrile P047 4,6-Dinitro-o-cresol, & salts P059 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro- 3a,4,7,7a-tetrahydro- P008 4-Aminopyridine P008 4-Pyridinamine P007 5-(Aminomethyl)-3-isoxazolol 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10-
    [Show full text]
  • Metabolism of Methiocarb and Carbaryl by Rat and Human Livers and Plasma, and Effect on Their PXR, CAR and Pparα Activities
    The Journal of Toxicological Sciences (J. Toxicol. Sci.) 677 Vol.41, No.5, 677-691, 2016 Original Article Metabolism of methiocarb and carbaryl by rat and human livers and plasma, and effect on their PXR, CAR and PPARα activities Chieri Fujino1, Yuki Tamura2, Satoko Tange1, Hiroyuki Nakajima3,4, Seigo Sanoh1, Yoko Watanabe2, Naoto Uramaru2, Hiroyuki Kojima5, Kouichi Yoshinari3,4, Shigeru Ohta1 and Shigeyuki Kitamura2 1Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan 2Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan 3Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan 4School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan 5Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan (Received April 14, 2016; Accepted August 2, 2016) ABSTRACT — The oxidative, reductive, and hydrolytic metabolism of methiocarb and the hydrolyt- ic metabolism of carbaryl by liver microsomes and plasma of rats or humans were examined. The effects of the metabolism of methiocarb and carbaryl on their nuclear receptor activities were also examined. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sul- foxide, and a novel metabolite, methiocarb sulfone were detected. Methiocarb sulfoxide was oxidized to the sulfone by liver microsomes and reduced back to methiocarb by liver cytosol. Thus, the intercon- version between methiocarb and the sulfoxide was found to be a new metabolic pathway for methiocarb by liver microsomes.
    [Show full text]
  • Download Report
    final report Project Code: AHW.003 Prepared by: Agrisearch Services Pty Ltd Date published: July 2000 PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Monitoring of insecticide resistance in field sampled buffalo flies Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. Table Of Contents 1. SUMMARy ................................................................................................................2 2. INTRODUCTION .......................................................................................................5 3. EXPERIMENTAL DETAILS .......................................................................................5 3.1 BIOASSAY METHOD .................................................................................................5 3.2 FARMS AND REGIONS SURVEyED .............................................................................6 3.3 QUESTIONNAIRE .....................................................................................................7
    [Show full text]
  • Acutely Toxic Chemical List
    EPA: Acutely Toxic Chemicals List United States Environmental Protection Agency (EPA) Acutely Toxic Chemical Name EPA Waste Code CAS # Acetaldehyde, chloro- P023 107-20-0 Acetamide, N-(aminothioxomethyl)- P002 591-08-2 Acetamide, 2-fluoro- P057 640-19-7 Acetic acid, fluoro-, sodium salt P058 62-74-8 1-Acetyl-2-thiourea P002 591-08-2 Acrolein P003 107-02-8 Aldicarb P070 116-06-3 Aldicarb sulfone. P203 1646-88-4 Aldrin P004 309-00-2 Allyl alcohol P005 107-18-6 Aluminum phosphide (R,T) P006 20859-73-8 5-(Aminomethyl)-3-isoxazolol P007 2763-96-4 4-Aminopyridine P008 504-24-5 Ammonium picrate (R) P009 131-74-8 Ammonium vanadate P119 7803-55-6 Argentate(1-), bis(cyano-C)-, potassium P099 506-61-6 Arsenic acid H3AsO4 P010 7778-39-4 Arsenic oxide As2 O3 P012 1327-53-3 Arsenic oxide As2O5 P011 1303-28-2 Arsenic pentoxide P011 1303-28-2 Arsenic trioxide P012 1327-53-3 Arsine, diethyl- P038 692-42-2 Arsonous dichloride, phenyl- P036 696-28-6 Aziridine P054 151-56-4 Aziridine, 2-methyl- P067 75-55-8 Barium cyanide P013 542-62-1 Benzenamine, 4-chloro- P024 106-47-8 Benzenamine, 4-nitro- P077 100-01-6 Benzene, (chloromethyl)- P028 100-44-7 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)- P042 51-43-4 Benzeneethanamine, alpha, alpha-dimethyl- P046 122-09-8 Updated September 2021 T:\Documentation\EHS-Updates\Acute Waste Codes.docx CONTINUED: Liquid Nitrogen Handling and Use United States Environmental Protection Agency (EPA) Acutely Toxic Chemical Name EPA Waste Code CAS # Benzenethiol P014 108-98-5 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, methylcarbamate.
    [Show full text]
  • Pesticides Contamination of Cereals and Legumes: Monitoring of Samples Marketed in Italy As a Contribution to Risk Assessment
    applied sciences Article Pesticides Contamination of Cereals and Legumes: Monitoring of Samples Marketed in Italy as a Contribution to Risk Assessment Valeria Nardelli 1, Valeria D’Amico 1, Mariateresa Ingegno 1 , Ines Della Rovere 1, Marco Iammarino 1,* , Francesco Casamassima 1, Anna Calitri 1, Donatella Nardiello 2 , Donghao Li 3 and Maurizio Quinto 2,3,* 1 Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; [email protected] (V.N.); [email protected] (V.D.); [email protected] (M.I.); [email protected] (I.D.R.); [email protected] (F.C.); [email protected] (A.C.) 2 Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria—Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy; [email protected] 3 Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, China; [email protected] * Correspondence: [email protected] (M.I.); [email protected] (M.Q.) Featured Application: This work offers a contribution to risk assessment regarding the levels of 37 pesticides in cereal and legume samples commercialized in Italy during the last years. It is well-known that prolonged exposure to pesticides can increase the risk of cardiovascular and respiratory disease, other than promoting cancer diseases. Thus, the World Health Organization and the European Food Safety Authority ask for monitoring of the levels of such substances, Citation: Nardelli, V.; D’Amico, V.; especially in vegetables, continuously, to have availability updated and detailed data on this Ingegno, M.; Della Rovere, I.; Iammarino, M.; Casamassima, F.; type of food contamination.
    [Show full text]
  • Household Insects – Homeowners ` CAUTION: All Insecticides Are Toxic to Some Degree; Therefore, Care Should Be Exercised in Their Use
    Household Insects – Homeowners ` CAUTION: All insecticides are toxic to some degree; therefore, care should be exercised in their use. The manufacturer’s directions on the label in the use of the material must be followed explicitly. Insect Threats Insecticides and Treatment* Remarks Ants Feed on foods and Baits (active ingredient and Remove food and clean up the area. Place (several may damage product): bait where ants occur or congregate. May species) clothing; may also sodium tetraborate decahydrate use several different baits at the same time sting, causing severe (Amdro Kills Ants Liquid Bait, Terro to discover one that ants will consume. reaction to some Liquid Ant Baits); Care should be taken not to contaminate people. hydramethylnon (Amdro Kills Ants foodstuffs. Also treat nests in yard. Follow Bait Stations and Stakes); label. orthoboric acid (Terro Perimeter Ant Bait); fipronil (Combat Max Ant Killing Bait Stations and Gel); abamectin (Raid Max Double Control Ant Baits, Raid Ant Baits III); dinotefuran (Hot Shot Ultra Clear Roach & Ant Gel Bait, Hot Shot Ultra Liquid Ant Bait); spinosad (Ortho Home Defense Liquid Ant Bait); thiamethoxam (Raid Precision Placement Ant Bait Gel) Crack and crevices: Follow label. prallethrin, esfenvalerate, pyrethrins, pyrethrum, permethrin, tetra- methrin, phenothrin, beta-cyfluthrin, cyfluthrin Indoor space: prallethrin, esfenvalerate, pyrethrins, pyrethrum, permethrin, tetramethrin, phenothrin, cyfluthrin, bifenthrin Outdoor barrier: prallethrin, esfenvalerate, permethrin, beta-cyfluthrin, cyfluthrin, bifenthrin, malathion, carbaryl Outdoor broadcast: hydramethylnon, pyriproxyfen, beta-cyfluthrin, esfenvalerate, bifenthrin, cyfluthrin, malathion, carbaryl *Labels on insecticides should state “material may be used in the household” and should be registered by the EPA for that purpose. Household Insects – Homeowners ` CAUTION: All insecticides are toxic to some degree; therefore, care should be exercised in their use.
    [Show full text]
  • Residues of Carbosulfan and Its Carbofuran Metabolites and 3-Hydroxy-Carbofuran in Oranges1, 2
    230 RESIDUES OF CARBOSULFAN AND ITS CARBOFURAN METABOLITES AND 3-HYDROXY-CARBOFURAN IN ORANGES1, 2 MARCOS JOSÉ TREVISAN3, GILBERTO CASADEI DE BAPTISTA4, LUIZ ROBERTO PIMENTEL TREVIZAN4, GERALDO PAPA5 ABSTRACT – The objectives of this study were to evaluate the residues of the insecticide carbosulfan and its carbofuran metabolites and 3- hydroxy-carbofuran in orange compartments (whole fruit, bagasse and juice) and comparison between the residual levels found in fruits with the maximum residue level and the safety interval established by the Brazilian legislation. Two field experiments were carried out, both with the following treatments: a-check; b-one application of 10 g of carbosulfan . 100 L-1 of water; c-one application with twice the rate applied in treatment b; d-four applications with the same rate applied in treatment b. Samples were taken at (-1), zero, 1, 3, 7, 14, 21 and 28 days after the last or unique application. The quantitative determinations were done by gas chromatography technique, using a nitrogen-phosphorus detector. The carbosulfan metabolism to its carbofuran metabolite was rapid (3 days), being both analytes concentrated in the bagasse (peel + flavedo + albedo). However, the metabolism of carbofuran to 3-hydroxy-carbofuran was of low intensity or this metabolite was quickly dissipated. Carbosulfan residues and its metabolites did not penetrate into the fruit, thus not contaminating the juice. The use of the pesticide was adequate, with respect to fruit consumption, in relation to the Brazilian legislation. Index
    [Show full text]