Modified Random Early Detection Algo

Total Page:16

File Type:pdf, Size:1020Kb

Modified Random Early Detection Algo Research Journal of Computer and Information Technology Sciences _______________________ ISSN 2320 – 6527 Vol. 5(3), 1-6, May (2017) Res. J. Computer and IT Sci. Modified random early detection algorithm to enhance the performance of bursty network traffic Anup Kumar Sharma * and Ashok Kumar Behera Department of CSE, Bhilai Institute of Technology, Durg, India [email protected] Available online at: www.isca.in Received 10 th April 2017, revised 16 th May 2017, accepted 19 th May 2017 Abstract Reduction in the delay of the network traffic is an important problem in the communication network. But, it becomes hard to bring down the delay with boosting the performance. The reason for this, to minimize the delay there must be a small queue but to reduce the packet drop there must have a large queue. In our proposed modified RED, the Explicit Congestion notification marked and network traffic packets will be dropped when only excess congestion occurs at router in TCP/IP network. The main aim is to provide better congestio n control over the bursty traffic with maintaining the advantages of RED. Due to exponential increases in network traffic, to minimize the increasing packet loss rates, the IETF (Internet Engineering Task Force) consider the establishment of AQM techniques such as RED, REM. We use ns2 to simulate the modified RED and demonstrate that the modified RED gives better delay reduction and higher link utilization in case of bursty network traffic. Keywords: Random early detection (RED) , Congestion control, Active queue management (AQM), Bursty traffic, Drop tail. Introduction To resolve the problem, like full queue problem, with tradition al queue management mechanisms, we have active queue The typical queue management technique for router, drop tail management techniques 8. These are proactive approach, means and random drop were used with the TCP, that fixes the buffer they start dropping the packets before buffer limit is reached, size as maximum buffer size for every router. Router accepts the because of this, sender is notified before the queue becomes full packet till the buffer becomes full, afterwards it starts dropping and may respo nd much earlier about the congestion. Lock out of newly arriving packet. This mechanism is termed as Drop problem can be resolved by using other queue management Tail. This mechanism has various disadvantages. The two -main technique like random drop, because the packets are dropped 1 important disadvantages . Firstly, Lock-Ou t Problem; In this it from various flows rather than a single flow in these might be possible that, drop tail grants one or some more flows mechanisms. In this paper, we have desi gned a modified to occupy the full queue space. Because of this it stops technique for packet drop with the help of RED algorithm and alternative flows from getting space in the queue. Other have compared with traditional packet drop technique in bursty drawback is full-queue problem; this problem occurs when the network traffic. queue becomes full or it is very nearly to full. This results in delay for packet delivery from source to destination. Motivation for modified red Many AQM techniques has been proposed in past years2. The RED has indeed many enhancements over conventional Random early detection algorithm makes use of average queue mechanism but stil l it has some limitations regarding stability, size to tackl e with the problem in traditional mechanisms for scalability, complexity in parameter setting and ease of congestion avoidance and control 3. Adaptive virtual queue deployment. Many researchers proposed various methods to (AVQ) is another mechanism which introduced a virtual queue overcome these issues. Random early detection gateway drops length whose capacity is less than actual link capacity 4.Another the packet in two distinct ways: In first way, packet is dropped AQM mechanism is Random exponential marking(REM),which when there arises buffer overflow secondly, packet is dropped is very similar to RED mechanism except the way congestion is or marked when the queue size surpasses the max threshold or measured and with a different marking probability function 5. random nature of dropping probability 9. So, for improvement in this mechanism, we must have to identify these dissimilar ways REM tries to attain negligible delay and high link utilization by of packet dropping. In first way, we need to drop the packet decoupling performance measure fro m congestion measure. without intimating directly to the sender regarding the Aweya J. et al. suggested a method to improve the effectiveness occurrence of congestion. Second way in RED drop, packets of RED mechanism by dynamically altering the threshold may be marked instead of dropping or can be transmitted. T he settings when the number of connections changes 6,7 . host can regulate his window size correspondingly. International Science Community Association 1 Research Journal of Computer and Information Technology Sciences ___________________________________ ISSN 2320 – 6527 Vol. 5(3), 1-6, May (2017) Res. J. Computer and IT Sci. Sender gets notified about the occurrence of congestion by the RED algorithm can be described as follows: timeout or reception of duplicate ack of the sent packet. A RED Algorithm mechanism for controlling the congestion is said the be good if Calculate average queue size avg L it slow down the network delay, which can be obtained by If avg L< min th retaining the avg buffer size small 10 . Most of the simulation enqueue packets results show that buffer overflow is the most significant cause else if min th ≤ avg L< max th for packet drop at the router in RED, particularly in the case of compute probability P a high traffic. A very important question in congestion avoidance with probability P a mechanism is the approach being applied to find out the packet Mark or drop packets from the queue dropping probability. In RED algorithm, average buffer size is else opted in calculation the packet dropping probability. But the with probability 1-Pa problem in RED mechanism is that average buffer size changes enqueue packets very often because of dynamic traffic. In this condition, the else if avg L ≥ max th packets are being dropped unnecessarily just because of discard packet overflow. This situation may result in timeout between the two end parties which lowers the performance. The entire above problem with RED encourages us to develop an enhanced mechanism To overcome these problems of RED, we choose persistent which doesn’t forces to drop the packet because of overflow. flows as an alternative of ephemeral flows for drooping of Also, it is required from the enhanced mechanism to keep the packets. Packets will be dropped only when there arises high useful characteristics of random early detection algorithm. congestion at the router in TCP/IP Network in the proposed mechanism 12 . Modified random early detection algorithm This method is applicable with all the Active queue Generally, we observe some problems in AQM techniques. The management techniques. An enhanced mechanism has been two-main problem can be described as follows: Firstly, the proposed based on the random early detection mechanism in AQM algorithm treats equally, traffic from all the different this paper. In this random drop and front drop are also modified. flows but in actual the internet traffic remainsmomentary 11 . Drop tail cannot be improved due to extra overhead in finding Also, congestion window of short lived traffic is small. non-ECN marked or miced packets. Therefore, in short lived flow dropping of packet not reduces congestion that much. RED Algorithm (Modified) For each arriving packet: Secondly, Congestion is notified to sender by dropping the if avg <= min then packet or by marking explicit congestion notification bit of L th enqueue packets header in the IP datagram. If marked datagram is considered for end prior drop, transmitter find out congestion a little late which if avg >= max then slow down the transmitter to put its window to suitable rate. L th Discard packets end RED algorithm is the widely deployed and most popular AQM if min <avg < max then technique. RED algorithm is the techniques used for congestion th L th if Mice == 1 or ECN == 1 then avoidance at the gateway. It also detects the congestion and enqueue packets notifies the sender about the congestion. The random early end detection gateway has been implemented to monitor avg buffer Drop or mark the packets with probability P size for every queue, and selects arbitrary connection to notify a end about the congestion. RED algorithm consists of following important parameter: i. Simulation Environment Average queue size: It gives the average size of the queue. It is The proposed modified RED algorithm has been simulated in measured in packets or bytes and denoted as avg L. ii. Maximum Threshold: It is the upper limit of the buffer after which all the the simulator, NS2 and the performance has been studied and incoming packet will be discarded and denoted as max iii. analyzed by plotting different networking parameters in the X th. graph plotter. Minimum threshold (min th ): min th is another limit of the queue after which the incoming packets are dropped or marked with a The simulation topology with one bottleneck link is shown in fixed probability. iv. Loss rate (P a): P a is the probability with which packets are discarded. v. Maximum drop probability the Figure-1. (P ): It is peak value of P . The packets must be discarded if max a Table-1 gives parameters and its values used in the simulation. the P a value exceeds P max . vi. Weights (wq): wq is represents the avg queue size. International Science Community Association 2 Research Journal of Computer and Information Technology Sciences ___________________________________ ISSN 2320 – 6527 Vol.
Recommended publications
  • Control of Traffic Congestion with Weighted Random Early Detection and Neural Network Implementation
    ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems Control of Traffic Congestion with Weighted Random Early Detection and Neural Network Implementation Irina Topalova Pavlinka Radoyska Department of Information Technology College of Energy and Electronics University of Telecommunications and Post, Bulgaria Technical University - Sofia Sofia, Bulgaria Sofia, Bulgaria [email protected] [email protected] Abstract—Applying Quality of Service mechanisms to modern class based QoS policy, of new users added to the backbone communications is essential for the efficiency and for the of the network. A Neural Network (NN), defined among traffic reliability. The various Quality of Service methods are many other types of neural networks NNs by Graupe [1] is based on queues management depending on individual traffic trained to adapt new end users to the QoS policy, already set parameters. Choosing Quality of Service parameters on the by other end-users and accepted by the intermediate routers. edge network devices defines the management queue and packet discard/queued parameters on the intermediate devices. The Weighted Random Early Detection (WRED) method, The proposed research explores the possibility of automatically described in Cisco guide [2], was applied to manage and to adapting to the already selected class based Quality of Service define the train and test NN parameters. The automatic policy, of new users added to the backbone of the network. A adaptation of additional networking devices to existing neural network is trained to automaticlly adapt new end users infrastructure with an already-defined QoS policy would to the quality of service policy, already set by other end-users lead to the release of human resources and acceleration of and accepted by the intermediate routers.
    [Show full text]
  • Random Early Detection (RED) Mechanism for Congestion Control
    Rochester Institute of Technology RIT Scholar Works Theses 7-2-2015 TCP – Random Early Detection (RED) mechanism for Congestion Control Asli Sungur [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Sungur, Asli, "TCP – Random Early Detection (RED) mechanism for Congestion Control" (2015). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. R.I.T TCP – Random Early Detection (RED) mechanism for Congestion Control by ASLI SUNGUR This thesis is presented as part of the Degree of Master of Science in Network and System Administration with emphasis in Networking Committee Members: Ali Raza Muhieddin Amer Nirmala Shenoy Information Science and Technologies Department, B. Thomas Golisano College of Computing & Information Sciences Rochester Institute of Technology Rochester, NY July 2, 2015 i Table of Contents Abstract ........................................................................................................................................................ iv Acknowledgement ........................................................................................................................................ v List of Figures .............................................................................................................................................
    [Show full text]
  • Quality of Service (Qos) Primer
    Quality of Service (QoS) Primer Avinash Tadimalla Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1 Agenda Du Jour What is QoS? Why is it Required? QoS Mechanisms QoS Architectures QoS Deployment Guide Q and A (and C) Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2 What is QoS? Quality of Service is an attempt to provide predictable response for applications from end-point to end-point by administratively applying different services within the network infrastructure for the applications OR Quality of Service refers to the capability of a network to provide better service to selected network traffic OR Network provides application with level of performance needed for application to function. Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 3 What is QoS (contd) “(Better) performance” as described by a set of parameters or measured by a set of metrics. Generic parameters: Bandwidth Delay, Delay-jitter Packet loss rate (or probability) Transport/Application-specific parameters: Timeouts Percentage of “important” packets lost These parameters can be measured at several granularities: “micro” flow, aggregate flow, population. QoS considered “better” if a) more parameters can be specified b) QoS can be specified at a fine-granularity. Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 4 What is QoS - Three Perspectives The user perspective • Users perceive that their applications are performing properly Voice, video, and data The network manager perspective • Need to manage bandwidth allocations to deliver the desired application performance Control delay, jitter, and packet loss Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved.
    [Show full text]
  • Lab 16: Random Early Detection (RED)
    NETWORK TOOLS AND PROTOCOLS Lab 16: Random Early Detection (RED) Document Version: 10-10-2019 Award 1829698 “CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers” Lab 16: Random Early Detection Contents Overview ............................................................................................................................. 3 Objectives............................................................................................................................ 3 Lab settings ......................................................................................................................... 3 Lab roadmap ....................................................................................................................... 3 1 Introduction ................................................................................................................ 3 1.1 Random Early Detection mechanism ................................................................... 4 2 Lab topology................................................................................................................ 6 2.1 Starting host h1, host h2, and host h3 ................................................................. 7 2.1 Emulating high-latency WAN ............................................................................... 8 2.4 Testing connection ............................................................................................... 9 3 Testing throughput on a network using Drop Tail
    [Show full text]
  • Modified Random Early Detection (RED) Technique Using Various Congestion Indicators
    Modified Random Early Detection (RED) Technique Using Various Congestion Indicators التعديل على تقنية الكشف العشوائي المبكر بإستخدام مؤشرات التدفق المختلفة Student Mohammad Ramez Abbas Ali Supervisor Dr. Ahmad Adel Abu-Shareha Thesis Submitted in Partial Fulfilment of the Requirements of the Degree of Master of Computer Information Systems Department of Computer Information Systems Faculty of Information Technology Middle East University January - 2017 II III IV Acknowledgments In the first, my thanks are hereby extended to my God, then to Dr. Ahmad Adel Abu-shareha for his supportive and helpful supervision, as well as for assisting a student in every step of the project, and for providing important information and basics, which was very important for the successful implementation of the project. Further thanks are extended to everyone who helped me develop my understanding of the various nuances of the project and for everyone who believes that the knowledge is right for everyone V Dedication I would like to exploit this opportunity to dedicate this project to my father, mother, my wifes, my Daughters, sun, brothers and sisters, without whose invaluable support. I would have ot been able to have achieved this in my lifetime. May God bless them VI TABLE OF CONTENTS Title I Authorization Statement II Examination Committee Decision III Acknowledgment IV Dedication V List of Contents VI List of Figures VIII List of Tables X List of Abbreviations XI Abstract XII XIV الملخص باللغة العربية Chapter One: INTRODUCTION 1 1.1 The Router Buffer and The Congestion Problem 3 1.2 Random Early Detection (RED) 5 1.3 Problem Statement 6 1.4 Problem Statement Questions 7 1.5 Objective 7 1.6 Motivation 7 1.7.
    [Show full text]
  • Dynamic Qos Parameter Adaptation in Routers Using a Multilayer Neural Network
    30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION DOI: 10.2507/30th.daaam.proceedings.027 DYNAMIC QOS PARAMETER ADAPTATION IN ROUTERS USING A MULTILAYER NEURAL NETWORK Irina Topalova & Plamena Koleva This Publication has to be referred as: Topalova, I[rina] & Koleva, P[lamena] (2019). Dynamic QoS Parameter Adaptation in Routers Using a Multilayer Neural Network, Proceedings of the 30th DAAAM International Symposium, pp.0207-0214, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/30th.daaam.proceedings.027 Abstract Practical prevention of network congestion is quality of service (QoS). Connection-oriented protocols, such as a TCP protocol, generally look for packet errors, losses, or delays to adjust the transmission speed. Currently, congestion control and avoidance algorithms are based on the idea that packet loss is a suitable indicator of network congestion. The data is transmitted using the Best Effort service model. When a network uses this model, it provides data without guaranteeing reliability and delay. However, these algorithms and the best effort service model are not suitable for applications that respond to delays or packet loss. WRED is implemented on the core routers of a network. The edge routers assign packets with IP priorities when packets enter the network. A neural network is trained to automatically adapt new end users to the quality of service policy, already set by other end-users and accepted by the intermediate routers. The obtained results show that the automated adaptation of the Quality of Service parameters to the already set ones, is possible for the intermediate routers, and the positive cons equences of applying such a method are discussed.
    [Show full text]
  • Comparison of Random Early Detection (Red) Techniques for Congestion Control in Differentiated Services Networks Based on Packet Droppings
    International Journal of Neural Networks ISSN: 2249-2763 & E-ISSN: 2249-2771, Volume 2, Issue 1, 2012, pp.-25-29. Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000238 COMPARISON OF RANDOM EARLY DETECTION (RED) TECHNIQUES FOR CONGESTION CONTROL IN DIFFERENTIATED SERVICES NETWORKS BASED ON PACKET DROPPINGS SINGH K.* AND KAUR G. University College of Engineering (UCE), Patiala-147 002, Punjab, India. *Corresponding Author: Email- [email protected] Received: October 25, 2012; Accepted: November 06, 2012 Abstract- Differentiated Services architecture offers services at different levels. Packets are classified and treated differently, as defined in the Service Level Agreement (SLA). A traffic policy is created which defines the shaping, dropping and marking of packets. For Congestion Control in Differentiated services networks different variants of Random Early Detection (RED) Scheme are used. RED Scheme is an Active Queue Management Scheme, which can sense congestion before its occurrence and can take appropriate preventive action. In this paper the performance of three variants of RED scheme RED with In/Out with Coupled Queues (RIO-C), RED with In/Out with Decoupled Queues (RIO-D) and Weighted RED (WRED) are compared in terms of drop of packets. Keywords- Differentiated Services Networks, Congestion Control, Random Early Detection (RED), Network Simulator 2 (NS). Citation: Singh K. and Kaur G. (2012) Comparison of Random Early Detection (RED) Techniques for Congestion Control in Differentiated Services Networks Based On Packet Droppings. International Journal of Neural Networks, ISSN: 2249-2763 & E-ISSN: 2249-2771, Volume 2, Issue 1, pp.-25-29. Copyright: Copyright©2012 Singh K. and Kaur G.
    [Show full text]
  • An Improvement Over Random Early Detection Algorithm: a Self-Tuning Approach
    http://jecei.srttu.edu Journal of Electrical and Computer Engineering Innovations JECEI, Vol. 2, No. 2, 2014 SRTTU Regular Paper An Improvement over Random Early Detection Algorithm: A Self-Tuning Approach Shahram Jamali1, Neda Alipasandi2,*, and Bita Alipasandi3 1Computer Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran 2Sama technical and vocational training college, Islamic Azad University, Ardabil Branch, Ardabil, Iran 3Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran *Corresponding Author’ Information: Tel.: +98-45-33361902, E-mail address: [email protected] ARTICLE INFO ABSTRACT Random Early Detection (RED) is one of the most commonly used Active ARTICLE HISTORY: Queue Management (AQM) algorithms that is recommended by IETF for Received 15 December 2013 deployment in the network. Although RED provides low average queuing Revised 1 February 2014 delay and high throughput at the same time, but effectiveness of RED is Accepted 15 February 2014 highly sensitive to the RED parameters setting. As network condition varies largely, setting RED's parameters with fixed values is not an KEYWORDS: efficient solution. We propose a new method to dynamically tuning RED's Internet parameters. For this purpose, we compute the rate of which the queue is Congestion control occupied and consider it as a congestion metric that will be forecasted Active Queue Management when the queue is overloaded. This meter is used to dynamically setting (AQM) RED parameters. The simulation results show the effectiveness of the Random Early Detection proposed method. According to the results, we achieve a significantly (RED) higher utilization and less packet loss comparing to original RED Self-Tuning algorithm in dynamic conditions of the network.
    [Show full text]
  • Enhanced Random Early Detection Using Responsive Congestion Indicators
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 3, 2019 Enhanced Random Early Detection using Responsive Congestion Indicators Ahmad Adel Abu-Shareha1 Information Technology and Computing Department Arab Open University (AOU) Riyadh, Saudi Arabia Abstract—Random Early Detection (RED) is an Active Queue The AQM methods monitor the status of the router buffers, Management (AQM) method proposed in the early 1990s to calculate the dropping probability (Dp) for each packet arrival, reduce the effects of network congestion on the router buffer. and implement packet dropping stochastically based on the Although various AQM methods have extended RED to enhance calculated value. Accordingly, AQM methods take one of the network performance, RED is still the most commonly utilized two opposite decisions: packet accommodation and packet method; this is because RED provides stable performance under dropping. The role of the router is to accommodate the arrival various network statuses. Indeed, RED maintains a manageable packets to transfer them to the intended destination; However, buffer queue length and avoids congestion resulting from an to avoid congestion, packets are dropped when the buffer increase in traffic load; this is accomplished using an indicator overflows and network performance degrading is expected [4]. that reflects the status of the buffer and a stochastic technique Generally, the developed AQM methods consist of three main for packet dropping. Although RED predicts congestion, reduces packet loss and avoids unnecessary packet dropping, it reacts components: the congestion indicators used to monitor the slowly to an increase in buffer queue length, making it buffer/network status, the function used to calculate Dp and the inadequate to detect and react to sudden heavy congestion.
    [Show full text]
  • WRED-Explicit Congestion Notification Feature Overview
    WRED-Explicit Congestion Notification Feature Overview Currently, the congestion control and avoidance algorithms for Transmission Control Protocol (TCP) are based on the idea that packet loss is an appropriate indication of congestion on networks transmitting data using the best-effort service model. When a network uses the best-effort service model, the network delivers data if it can, without any assurance of reliability, delay bounds, or throughput. However, these algorithms and the best-effort service model are not suited to applications that are sensitive to delay or packet loss (for instance, interactive traffic including Telnet, web-browsing, and transfer of audio and video data). Weighted Random Early Detection (WRED), and by extension, Explicit Congestion Notification (ECN), helps to solve this problem. RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP, states that with the addition of active queue management (for example, WRED) to the Internet infrastructure, routers are no longer limited to packet loss as an indication of congestion. • WRED Explicit Congestion Notification, page 1 WRED Explicit Congestion Notification Information About WRED Explicit Congestion Notification Guidelines and Limitations for WRED Explicit Congestion Notification • Explicit Congestion Notification (ECN) parameters are configurable only at system level. • Weighted Random Early Detection (WRED) cannot be configured alone on a Quality of Service (QoS) group. ECN is enabled by default. • You must configure WRED thresholds for 10 G interfaces and 40 G interfaces even when no interfaces are present. • WRED ECN is not applicable to multicast or broadcast traffic. • WRED ECN is not supported on Nexus 5000 series switches. Cisco Nexus 5600 Series NX-OS Quality of Service Configuration Guide, Release 7.x OL-31638-03 1 WRED-Explicit Congestion Notification Feature Overview Information About WRED Explicit Congestion Notification How WRED Works WRED makes early detection of congestion possible and provides a means for handling multiple classes of traffic.
    [Show full text]
  • The RED Algorithm – Averaged Queue Weight Modeling for Non Linear Traffic
    MEE09:78 The RED Algorithm – Averaged Queue Weight Modeling for Non Linear Traffic Sridhar Madipelli David Raj Gillella Sudhakar Devaraya This thesis is presented as part of the Degree of Master of Science in Electrical Engineering with Emphasis in Telecommunication Blekinge Institute of Technology November 2009 Master of Science Program in Electrical Engineering School of Computing Blekinge Institute of Technology Advisor: Dr. Doru Constantinescu Examiner: Dr. Doru Constantinescu i ii Abstract This thesis presents an approach in developing a congestion avoidance algorithm in computer networks for router-based communication. In internet communications, the requests generated are transferred through network nodes called routers which routes information, from one node to another, depending upon the request made. As the traffic load increases in the communication links, the routers must be designed to provide fair traffic flows, from a source to a destination, for all network nodes. During heavy traffic conditions the routers may get congested and the traffic flow through such a router degrades rapidly resulting in heavy packet dropping. Furthermore, this fact may also lead to a complete traffic collapse. To achieve fair transportation through such routers, the routers must be designed and provisioned with advanced congestion avoidance algorithms in order to achieve good performance. Congestion avoidance algorithms were used in the past, e.g. Active Queue Management (AQM), or the Drop Tail (DT) algorithm. To reduce the congestion effect, a new congestion avoidance algorithm named Random Early Detection (RED) was suggested. In RED, the calculation of packet dropping probabilities uses a queue weight factor. When compared to the previous RED approach, a fixed value is assigned leading to constant congestion reduction and if the network is varied randomly this fixed value may result in over congestion.
    [Show full text]
  • DSRED: a New Queue Management Scheme for the Next Generation Internet
    IEICE TRANS. COMMUN., VOL.E89–B, NO.3 MARCH 2006 764 PAPER DSRED: A New Queue Management Scheme for the Next Generation Internet Bing ZHENG† and Mohammed ATIQUZZAMAN††a), Nonmembers SUMMARY Random Early Detection (RED), an active queue manage- average queue size as shown in Fig. 1. ment scheme, has been recommended by the Internet Engineering Task Despite the fact that the performance of RED has been ff Force (IETF) for the next generation routers. RED su ers from a num- widely studied in the literature, its behavior is still not fully ber of performance problems, such as low throughput, large delay/jitter, and induces instability in networks. Many of the previous attempts to im- understood [4]–[6]; especially the relationship between its prove the performance of RED have been based on optimizing the values parameters and performance in terms of throughput is still of the RED parameters. However, results have shown that such optimiza- under research [1], [7]–[9]. As will be described in detail tions resulted in limited improvement in the performance. In this paper, in Sect. 2, studies have shown that RED suffers from low we propose Double Slope RED (DSRED), a new active queue manage- / ment scheme to improve the performance of RED. The proposed scheme throughput, large delay jitter, unfairness to connections, and is based on dynamically changing the slope of the packet drop probability induces instability in the network. The objective of this pa- curve as a function of the level of congestion in the buffer. Results show per is to develop a new RED-based AQM scheme which will that our proposed scheme results in better performance than original RED.
    [Show full text]