Weight Queue Dynamic Active Queue Management Algorithm

Total Page:16

File Type:pdf, Size:1020Kb

Weight Queue Dynamic Active Queue Management Algorithm S S symmetry Article Weight Queue Dynamic Active Queue Management Algorithm Mahmoud Baklizi Department of Computer Networks Systems, The World Islamic Science & Education University W.I.S.E, Amman 00962, Jordan; [email protected] Received: 16 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: The current problem of packets generation and transformation around the world is router congestion, which then leads to a decline in the network performance in term of queuing delay (D) and packet loss (PL). The existing active queue management (AQM) algorithms do not optimize the network performance because these algorithms use static techniques for detecting and reacting to congestion at the router buffer. In this paper, a weight queue active queue management (WQDAQM) based on dynamic monitoring and reacting is proposed. Queue weight and the thresholds are dynamically adjusted based on the traffic load. WQDAQM controls the queue within the router buffer by stabilizing the queue weight between two thresholds dynamically. The WQDAQM algorithm is simulated and compared with the existing active queue management algorithms. The results reveal that the proposed method demonstrates better performance in terms mean queue length, D, PL, and dropping probability, compared to gentle random early detection (GRED), dynamic GRED, and stabilized dynamic GRED in both heavy or no-congestion cases. In detail, in a heavy congestion status, the proposed algorithm overperformed dynamic GRED (DGRED) by 13.3%, GRED by 19.2%, stabilized dynamic GRED (SDGRED) by 6.7% in term of mean queue length (mql). In terms of D in a heavy congestion status, the proposed algorithm overperformed DGRED by 13.3%, GRED by 19.3%, SDGRED by 6.3%. As for PL, the proposed algorithm overperformed DGRED by 15.5%, SDGRED by 19.8%, GRED by 86.3% in term of PL. Keywords: congestion algorithms; GRED; SDGRED; implementation; queue weight 1. Introduction Computer network devices are utilized in smart homes, smart buildings, organizations, universities, companies, and countries. The wide distribution of computer networks is a consequence of many factors, and among these is the emerging of the Internet-of-Things (IoT). The ever-increasing use of computer networks has resulted in increasing computer crimes and cyber-attacks. Moreover, the connected terminals throughout these networks add a heavy load on the network resources and devices [1]. As a result, the amount of data transferred across the network devices, such as computers and routers, greatly increases. To share the network resources [2–6], the transferred data are divided into packets. Every device that generates packets must be temporarily stored at the router buffer before forwarding to the next router or its destination. When the router buffer becomes full, congestion occurs, and it will lead to the case of packet loss (Figure1)[7–10]. Symmetry 2020, 12, 2077; doi:10.3390/sym12122077 www.mdpi.com/journal/symmetry Symmetry 2020, 12, 2077 2 of 16 Symmetry 2020, 12, x FOR PEER REVIEW 2 of 15 FigureFigure 1. 1. CongestedCongested router. router. TCPTCP protocol hashas its its congestion congestion control, control, however, however, congestion congestion control control at the at router the router buffer buffer that results that resultsin using in TCP using over TCP the underlyingover the underlying networks isnetworks not considered is not [ 4considered,11]. Congestion [4,11]. plays Congestion a prominent plays role a prominentin the deterioration role in the of deterioration network performance. of network This performance. phenomenon This increasesphenomenon the queuing increases delay the queuing (D) and delaypacket (D) loss and (PL packet) and decreases loss (PL) and the numberdecreases of the packets number transferred of packet tos theirtransferred destination, to their which destination, is called whichthroughput is called (T) [throughput10,12–14]. To (T) face [10,12–14]. such a challenge, To face such many a activechallenge, queue many management active queue (AQM) management algorithms (AQM)were developed algorithms and were improved developed to detect and congestion improved atto andetect early congestion stage and improveat an early network stage and performance. improve networkSeveral examples performance. include Several the enhanced examples adaptive include gentle the random enhanced early adaptive detection (GRED)gentle random [15], stabilized early detectiondynamic GRED(GRED) (SDGRED) [15], stabilized [16], Markov-modulateddynamic GRED (SDGRED) queuing systems[16], Markov-modulated [17], FL Intelligent queuing Traffic systemsManagement [17], [FL18 ],Intelligent fuzzy logic Traffic approach Management for congestion [18], fuzzy control logic [ 19approach], and dynamic for congestion GRED (DGRED) control [19], [20], andMarkov-modulated dynamic GRED [ 17(DGRED)], FLACC [20], [19 ],Markov-modulated and dynamic stochastic [17], earlyFLACC discovery [19], and [20 dynamic]. These algorithms, stochastic earlyalthough discovery they have [20]. great These influence algorithms, in easing although the congestion, they have sugreatffer frominfluence some in limitations. easing theFor congestion, example, sufferthe DGRED from some algorithm limita adoptstions. For the conceptexample, of the target DGRED average algorithm queue lengthadopts (Ttheaql ),concept and thus of target drops averagea large numberqueue length of packets (Taql),to and statically thus drops stabilize a large the number queue of length packets at to a specificstatically length. stabilize In the addition, queue lengthGRED at algorithms a specific length. use static In addition, thresholds GRED and algorithms qw, which leaduse static to bursty thresholds traffic and problems qw, which and lead rapid to burstycongestion traffic in problems the router and bu rapidffer, congestion respectively. in Therefore,the router buffer, the router respectively. buffer rapidly Therefore, increases the router and bufferbecomes rapidly full. increases and becomes full. TheThe performance measures, measures, delay delay (D), (D), packet packet loss loss (P LL)) and and throughput throughput (T) (T) have have a a primary primary concernconcern because theythey areare used used to to evaluate evaluate whether whethe ther the network network performance performance is satisfactory is satisfactory or not or [not21]. [21].The existingThe existing algorithms algorithms do not do provide not provide the best the performancebest performance according according to the to mean the mean queue queue length length (mql), (Dmql and), D P Land. This PL. is becauseThis is because the existing the existing algorithms algori usedthms a static used technique a static technique for detecting for anddetecting reacting and to reactingcongestion to congestion at the router at butheff er.router Therefore, buffer. aTher dynamicefore, algorithma dynamic must algorith be developedm must be todeveloped manage theto managepacket dropping the packet based dropping on the based dynamic on the weight dynamic queue. weight queue. ThisThis study proposes a new algorithm called we weightight queue dynamic active queue management algorithmalgorithm (WQDAQM)(WQDAQM) to to address address the limitationsthe limitation of thes existingof the onesexisting and improveones and network improve performance. network performance.The proposed The algorithm proposed is integrated algorithm withis integrated the TCP with protocol the TCP to maintain protocol the to maintain established the conversation established conversationfor data exchange for data in high exchange performance in high [22 performance]. The specific [22]. objective The specific of this studyobjective is to of decrease this study the meanis to decreasequeue length the mean (mql), queue PL, and length D compared (mql), PL with, and other D compared algorithms. with The other proposed algorithms. algorithm The proposed controls algorithmand manages controls the packet and manages dropping the by maintainingpacket dropping the queue by maintaining weight and the thresholdsqueue weight dynamically. and the thresholdsThe rest of dynamically. the paper is organizedThe rest of asthe follows, paper is Section organized2 presents as follows, the literature Section 2 review,presents and the Sectionliterature3 review,discusses and the Section proposed 3 discusses WQDAQM the proposed algorithm, WQDAQM Section4 explains algorithm, the simulationSection 4 explains mechanism, the simulation Section5 mechanism,discusses the Section results 5 of discusses all compared the results algorithms, of all andcompared Section 6algorithms, provides the and conclusion. Section 6 provides the conclusion. 2. Related Works Several algorithms were created to manage the queue and control congestion at the router buffer [3,8,11,23]. The default algorithm for congestion control is the drop tail (DT) algorithm [24]. This algorithm uses the first-in first-out (FIFO) principle, in which the arriving packets are dropped once the router buffer overflows, as illustrated in Figure 2 [11]. The DT does not have thresholds, and when the maximum capacity of the router buffer is reached, the new arriving packets are dropped directly. Symmetry 2020, 12, 2077 3 of 16 2. Related Works Several algorithms were created to manage the queue and control congestion at the router buffer [3,8,11,23]. The default algorithm for congestion control is the drop tail (DT) algorithm [24]. This algorithm uses the first-in first-out (FIFO) principle, in which the arriving packets are dropped once the
Recommended publications
  • Control of Traffic Congestion with Weighted Random Early Detection and Neural Network Implementation
    ICAS 2018 : The Fourteenth International Conference on Autonomic and Autonomous Systems Control of Traffic Congestion with Weighted Random Early Detection and Neural Network Implementation Irina Topalova Pavlinka Radoyska Department of Information Technology College of Energy and Electronics University of Telecommunications and Post, Bulgaria Technical University - Sofia Sofia, Bulgaria Sofia, Bulgaria [email protected] [email protected] Abstract—Applying Quality of Service mechanisms to modern class based QoS policy, of new users added to the backbone communications is essential for the efficiency and for the of the network. A Neural Network (NN), defined among traffic reliability. The various Quality of Service methods are many other types of neural networks NNs by Graupe [1] is based on queues management depending on individual traffic trained to adapt new end users to the QoS policy, already set parameters. Choosing Quality of Service parameters on the by other end-users and accepted by the intermediate routers. edge network devices defines the management queue and packet discard/queued parameters on the intermediate devices. The Weighted Random Early Detection (WRED) method, The proposed research explores the possibility of automatically described in Cisco guide [2], was applied to manage and to adapting to the already selected class based Quality of Service define the train and test NN parameters. The automatic policy, of new users added to the backbone of the network. A adaptation of additional networking devices to existing neural network is trained to automaticlly adapt new end users infrastructure with an already-defined QoS policy would to the quality of service policy, already set by other end-users lead to the release of human resources and acceleration of and accepted by the intermediate routers.
    [Show full text]
  • Random Early Detection (RED) Mechanism for Congestion Control
    Rochester Institute of Technology RIT Scholar Works Theses 7-2-2015 TCP – Random Early Detection (RED) mechanism for Congestion Control Asli Sungur [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Sungur, Asli, "TCP – Random Early Detection (RED) mechanism for Congestion Control" (2015). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. R.I.T TCP – Random Early Detection (RED) mechanism for Congestion Control by ASLI SUNGUR This thesis is presented as part of the Degree of Master of Science in Network and System Administration with emphasis in Networking Committee Members: Ali Raza Muhieddin Amer Nirmala Shenoy Information Science and Technologies Department, B. Thomas Golisano College of Computing & Information Sciences Rochester Institute of Technology Rochester, NY July 2, 2015 i Table of Contents Abstract ........................................................................................................................................................ iv Acknowledgement ........................................................................................................................................ v List of Figures .............................................................................................................................................
    [Show full text]
  • Quality of Service (Qos) Primer
    Quality of Service (QoS) Primer Avinash Tadimalla Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1 Agenda Du Jour What is QoS? Why is it Required? QoS Mechanisms QoS Architectures QoS Deployment Guide Q and A (and C) Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 2 What is QoS? Quality of Service is an attempt to provide predictable response for applications from end-point to end-point by administratively applying different services within the network infrastructure for the applications OR Quality of Service refers to the capability of a network to provide better service to selected network traffic OR Network provides application with level of performance needed for application to function. Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 3 What is QoS (contd) “(Better) performance” as described by a set of parameters or measured by a set of metrics. Generic parameters: Bandwidth Delay, Delay-jitter Packet loss rate (or probability) Transport/Application-specific parameters: Timeouts Percentage of “important” packets lost These parameters can be measured at several granularities: “micro” flow, aggregate flow, population. QoS considered “better” if a) more parameters can be specified b) QoS can be specified at a fine-granularity. Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential 4 What is QoS - Three Perspectives The user perspective • Users perceive that their applications are performing properly Voice, video, and data The network manager perspective • Need to manage bandwidth allocations to deliver the desired application performance Control delay, jitter, and packet loss Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved.
    [Show full text]
  • Lab 16: Random Early Detection (RED)
    NETWORK TOOLS AND PROTOCOLS Lab 16: Random Early Detection (RED) Document Version: 10-10-2019 Award 1829698 “CyberTraining CIP: Cyberinfrastructure Expertise on High-throughput Networks for Big Science Data Transfers” Lab 16: Random Early Detection Contents Overview ............................................................................................................................. 3 Objectives............................................................................................................................ 3 Lab settings ......................................................................................................................... 3 Lab roadmap ....................................................................................................................... 3 1 Introduction ................................................................................................................ 3 1.1 Random Early Detection mechanism ................................................................... 4 2 Lab topology................................................................................................................ 6 2.1 Starting host h1, host h2, and host h3 ................................................................. 7 2.1 Emulating high-latency WAN ............................................................................... 8 2.4 Testing connection ............................................................................................... 9 3 Testing throughput on a network using Drop Tail
    [Show full text]
  • Modified Random Early Detection (RED) Technique Using Various Congestion Indicators
    Modified Random Early Detection (RED) Technique Using Various Congestion Indicators التعديل على تقنية الكشف العشوائي المبكر بإستخدام مؤشرات التدفق المختلفة Student Mohammad Ramez Abbas Ali Supervisor Dr. Ahmad Adel Abu-Shareha Thesis Submitted in Partial Fulfilment of the Requirements of the Degree of Master of Computer Information Systems Department of Computer Information Systems Faculty of Information Technology Middle East University January - 2017 II III IV Acknowledgments In the first, my thanks are hereby extended to my God, then to Dr. Ahmad Adel Abu-shareha for his supportive and helpful supervision, as well as for assisting a student in every step of the project, and for providing important information and basics, which was very important for the successful implementation of the project. Further thanks are extended to everyone who helped me develop my understanding of the various nuances of the project and for everyone who believes that the knowledge is right for everyone V Dedication I would like to exploit this opportunity to dedicate this project to my father, mother, my wifes, my Daughters, sun, brothers and sisters, without whose invaluable support. I would have ot been able to have achieved this in my lifetime. May God bless them VI TABLE OF CONTENTS Title I Authorization Statement II Examination Committee Decision III Acknowledgment IV Dedication V List of Contents VI List of Figures VIII List of Tables X List of Abbreviations XI Abstract XII XIV الملخص باللغة العربية Chapter One: INTRODUCTION 1 1.1 The Router Buffer and The Congestion Problem 3 1.2 Random Early Detection (RED) 5 1.3 Problem Statement 6 1.4 Problem Statement Questions 7 1.5 Objective 7 1.6 Motivation 7 1.7.
    [Show full text]
  • Dynamic Qos Parameter Adaptation in Routers Using a Multilayer Neural Network
    30TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION DOI: 10.2507/30th.daaam.proceedings.027 DYNAMIC QOS PARAMETER ADAPTATION IN ROUTERS USING A MULTILAYER NEURAL NETWORK Irina Topalova & Plamena Koleva This Publication has to be referred as: Topalova, I[rina] & Koleva, P[lamena] (2019). Dynamic QoS Parameter Adaptation in Routers Using a Multilayer Neural Network, Proceedings of the 30th DAAAM International Symposium, pp.0207-0214, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria DOI: 10.2507/30th.daaam.proceedings.027 Abstract Practical prevention of network congestion is quality of service (QoS). Connection-oriented protocols, such as a TCP protocol, generally look for packet errors, losses, or delays to adjust the transmission speed. Currently, congestion control and avoidance algorithms are based on the idea that packet loss is a suitable indicator of network congestion. The data is transmitted using the Best Effort service model. When a network uses this model, it provides data without guaranteeing reliability and delay. However, these algorithms and the best effort service model are not suitable for applications that respond to delays or packet loss. WRED is implemented on the core routers of a network. The edge routers assign packets with IP priorities when packets enter the network. A neural network is trained to automatically adapt new end users to the quality of service policy, already set by other end-users and accepted by the intermediate routers. The obtained results show that the automated adaptation of the Quality of Service parameters to the already set ones, is possible for the intermediate routers, and the positive cons equences of applying such a method are discussed.
    [Show full text]
  • Comparison of Random Early Detection (Red) Techniques for Congestion Control in Differentiated Services Networks Based on Packet Droppings
    International Journal of Neural Networks ISSN: 2249-2763 & E-ISSN: 2249-2771, Volume 2, Issue 1, 2012, pp.-25-29. Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000238 COMPARISON OF RANDOM EARLY DETECTION (RED) TECHNIQUES FOR CONGESTION CONTROL IN DIFFERENTIATED SERVICES NETWORKS BASED ON PACKET DROPPINGS SINGH K.* AND KAUR G. University College of Engineering (UCE), Patiala-147 002, Punjab, India. *Corresponding Author: Email- [email protected] Received: October 25, 2012; Accepted: November 06, 2012 Abstract- Differentiated Services architecture offers services at different levels. Packets are classified and treated differently, as defined in the Service Level Agreement (SLA). A traffic policy is created which defines the shaping, dropping and marking of packets. For Congestion Control in Differentiated services networks different variants of Random Early Detection (RED) Scheme are used. RED Scheme is an Active Queue Management Scheme, which can sense congestion before its occurrence and can take appropriate preventive action. In this paper the performance of three variants of RED scheme RED with In/Out with Coupled Queues (RIO-C), RED with In/Out with Decoupled Queues (RIO-D) and Weighted RED (WRED) are compared in terms of drop of packets. Keywords- Differentiated Services Networks, Congestion Control, Random Early Detection (RED), Network Simulator 2 (NS). Citation: Singh K. and Kaur G. (2012) Comparison of Random Early Detection (RED) Techniques for Congestion Control in Differentiated Services Networks Based On Packet Droppings. International Journal of Neural Networks, ISSN: 2249-2763 & E-ISSN: 2249-2771, Volume 2, Issue 1, pp.-25-29. Copyright: Copyright©2012 Singh K. and Kaur G.
    [Show full text]
  • An Improvement Over Random Early Detection Algorithm: a Self-Tuning Approach
    http://jecei.srttu.edu Journal of Electrical and Computer Engineering Innovations JECEI, Vol. 2, No. 2, 2014 SRTTU Regular Paper An Improvement over Random Early Detection Algorithm: A Self-Tuning Approach Shahram Jamali1, Neda Alipasandi2,*, and Bita Alipasandi3 1Computer Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran 2Sama technical and vocational training college, Islamic Azad University, Ardabil Branch, Ardabil, Iran 3Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran *Corresponding Author’ Information: Tel.: +98-45-33361902, E-mail address: [email protected] ARTICLE INFO ABSTRACT Random Early Detection (RED) is one of the most commonly used Active ARTICLE HISTORY: Queue Management (AQM) algorithms that is recommended by IETF for Received 15 December 2013 deployment in the network. Although RED provides low average queuing Revised 1 February 2014 delay and high throughput at the same time, but effectiveness of RED is Accepted 15 February 2014 highly sensitive to the RED parameters setting. As network condition varies largely, setting RED's parameters with fixed values is not an KEYWORDS: efficient solution. We propose a new method to dynamically tuning RED's Internet parameters. For this purpose, we compute the rate of which the queue is Congestion control occupied and consider it as a congestion metric that will be forecasted Active Queue Management when the queue is overloaded. This meter is used to dynamically setting (AQM) RED parameters. The simulation results show the effectiveness of the Random Early Detection proposed method. According to the results, we achieve a significantly (RED) higher utilization and less packet loss comparing to original RED Self-Tuning algorithm in dynamic conditions of the network.
    [Show full text]
  • Modified Random Early Detection Algo
    Research Journal of Computer and Information Technology Sciences _______________________ ISSN 2320 – 6527 Vol. 5(3), 1-6, May (2017) Res. J. Computer and IT Sci. Modified random early detection algorithm to enhance the performance of bursty network traffic Anup Kumar Sharma * and Ashok Kumar Behera Department of CSE, Bhilai Institute of Technology, Durg, India [email protected] Available online at: www.isca.in Received 10 th April 2017, revised 16 th May 2017, accepted 19 th May 2017 Abstract Reduction in the delay of the network traffic is an important problem in the communication network. But, it becomes hard to bring down the delay with boosting the performance. The reason for this, to minimize the delay there must be a small queue but to reduce the packet drop there must have a large queue. In our proposed modified RED, the Explicit Congestion notification marked and network traffic packets will be dropped when only excess congestion occurs at router in TCP/IP network. The main aim is to provide better congestio n control over the bursty traffic with maintaining the advantages of RED. Due to exponential increases in network traffic, to minimize the increasing packet loss rates, the IETF (Internet Engineering Task Force) consider the establishment of AQM techniques such as RED, REM. We use ns2 to simulate the modified RED and demonstrate that the modified RED gives better delay reduction and higher link utilization in case of bursty network traffic. Keywords: Random early detection (RED) , Congestion control, Active queue management (AQM), Bursty traffic, Drop tail. Introduction To resolve the problem, like full queue problem, with tradition al queue management mechanisms, we have active queue The typical queue management technique for router, drop tail management techniques 8.
    [Show full text]
  • Enhanced Random Early Detection Using Responsive Congestion Indicators
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 3, 2019 Enhanced Random Early Detection using Responsive Congestion Indicators Ahmad Adel Abu-Shareha1 Information Technology and Computing Department Arab Open University (AOU) Riyadh, Saudi Arabia Abstract—Random Early Detection (RED) is an Active Queue The AQM methods monitor the status of the router buffers, Management (AQM) method proposed in the early 1990s to calculate the dropping probability (Dp) for each packet arrival, reduce the effects of network congestion on the router buffer. and implement packet dropping stochastically based on the Although various AQM methods have extended RED to enhance calculated value. Accordingly, AQM methods take one of the network performance, RED is still the most commonly utilized two opposite decisions: packet accommodation and packet method; this is because RED provides stable performance under dropping. The role of the router is to accommodate the arrival various network statuses. Indeed, RED maintains a manageable packets to transfer them to the intended destination; However, buffer queue length and avoids congestion resulting from an to avoid congestion, packets are dropped when the buffer increase in traffic load; this is accomplished using an indicator overflows and network performance degrading is expected [4]. that reflects the status of the buffer and a stochastic technique Generally, the developed AQM methods consist of three main for packet dropping. Although RED predicts congestion, reduces packet loss and avoids unnecessary packet dropping, it reacts components: the congestion indicators used to monitor the slowly to an increase in buffer queue length, making it buffer/network status, the function used to calculate Dp and the inadequate to detect and react to sudden heavy congestion.
    [Show full text]
  • WRED-Explicit Congestion Notification Feature Overview
    WRED-Explicit Congestion Notification Feature Overview Currently, the congestion control and avoidance algorithms for Transmission Control Protocol (TCP) are based on the idea that packet loss is an appropriate indication of congestion on networks transmitting data using the best-effort service model. When a network uses the best-effort service model, the network delivers data if it can, without any assurance of reliability, delay bounds, or throughput. However, these algorithms and the best-effort service model are not suited to applications that are sensitive to delay or packet loss (for instance, interactive traffic including Telnet, web-browsing, and transfer of audio and video data). Weighted Random Early Detection (WRED), and by extension, Explicit Congestion Notification (ECN), helps to solve this problem. RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP, states that with the addition of active queue management (for example, WRED) to the Internet infrastructure, routers are no longer limited to packet loss as an indication of congestion. • WRED Explicit Congestion Notification, page 1 WRED Explicit Congestion Notification Information About WRED Explicit Congestion Notification Guidelines and Limitations for WRED Explicit Congestion Notification • Explicit Congestion Notification (ECN) parameters are configurable only at system level. • Weighted Random Early Detection (WRED) cannot be configured alone on a Quality of Service (QoS) group. ECN is enabled by default. • You must configure WRED thresholds for 10 G interfaces and 40 G interfaces even when no interfaces are present. • WRED ECN is not applicable to multicast or broadcast traffic. • WRED ECN is not supported on Nexus 5000 series switches. Cisco Nexus 5600 Series NX-OS Quality of Service Configuration Guide, Release 7.x OL-31638-03 1 WRED-Explicit Congestion Notification Feature Overview Information About WRED Explicit Congestion Notification How WRED Works WRED makes early detection of congestion possible and provides a means for handling multiple classes of traffic.
    [Show full text]
  • The RED Algorithm – Averaged Queue Weight Modeling for Non Linear Traffic
    MEE09:78 The RED Algorithm – Averaged Queue Weight Modeling for Non Linear Traffic Sridhar Madipelli David Raj Gillella Sudhakar Devaraya This thesis is presented as part of the Degree of Master of Science in Electrical Engineering with Emphasis in Telecommunication Blekinge Institute of Technology November 2009 Master of Science Program in Electrical Engineering School of Computing Blekinge Institute of Technology Advisor: Dr. Doru Constantinescu Examiner: Dr. Doru Constantinescu i ii Abstract This thesis presents an approach in developing a congestion avoidance algorithm in computer networks for router-based communication. In internet communications, the requests generated are transferred through network nodes called routers which routes information, from one node to another, depending upon the request made. As the traffic load increases in the communication links, the routers must be designed to provide fair traffic flows, from a source to a destination, for all network nodes. During heavy traffic conditions the routers may get congested and the traffic flow through such a router degrades rapidly resulting in heavy packet dropping. Furthermore, this fact may also lead to a complete traffic collapse. To achieve fair transportation through such routers, the routers must be designed and provisioned with advanced congestion avoidance algorithms in order to achieve good performance. Congestion avoidance algorithms were used in the past, e.g. Active Queue Management (AQM), or the Drop Tail (DT) algorithm. To reduce the congestion effect, a new congestion avoidance algorithm named Random Early Detection (RED) was suggested. In RED, the calculation of packet dropping probabilities uses a queue weight factor. When compared to the previous RED approach, a fixed value is assigned leading to constant congestion reduction and if the network is varied randomly this fixed value may result in over congestion.
    [Show full text]