Proteinuria in Children: Evaluation and Differential Diagnosis ALEXANDER K.C

Total Page:16

File Type:pdf, Size:1020Kb

Proteinuria in Children: Evaluation and Differential Diagnosis ALEXANDER K.C Proteinuria in Children: Evaluation and Differential Diagnosis ALEXANDER K.C. LEUNG, MD; ALEX H.C. WONG, MD, MPH; and STEFANI S.N. BARG, MD University of Calgary, Calgary, Alberta, Canada Although proteinuria is usually benign in the form of transient or orthostatic proteinuria, persistent proteinuria may be associated with more serious renal diseases. Proteinuria may be an independent risk factor for the progression of chronic kidney disease in children. Mechanisms of proteinuria can be categorized as glomerular, tubular, secretory, or overflow. A history, a physical examination, and laboratory tests help determine the cause. Transient (functional) proteinuria is temporary. It can occur with fever, exercise, stress, or cold exposure, and it resolves when the inciting factor is removed. Orthostatic proteinuria is the most common type in children, especially in adolescent males. It is a benign condition without clinical significance. Persistent proteinuria can be glomerular or tubulointerstitial in ori- gin. The urine dipstick test is the most widely used screening method. Although a 24-hour urine protein excretion test is usually recommended for quantitation of the amount of protein excreted in the urine, it may be impractical in chil- dren. A spot, first-morning urine test for a protein-to-creatinine or protein-to-osmolality ratio is a reliable substitute. Treatment of proteinuria should be directed at the underlying cause. Patients with active urinary sediments, hematu- ria, hypertension, hypocomplementemia, renal insufficiency with depressed glomerular filtration rate, or signs and symptoms suggestive of vasculitic disease may require referral to a pediatric nephrologist and a renal biopsy. (Am Fam Physician. 2017;95(4):248-254. Copyright © 2017 American Academy of Family Physicians.) CME This clinical content he presence of protein in urine is a with age, peaks during adolescence, and is conforms to AAFP criteria common laboratory finding in chil- higher in girls.11 for continuing medical education (CME). See dren. Although proteinuria is usu- CME Quiz Questions on ally benign, it can be a marker of a Mechanisms of Proteinuria page 220. Tserious underlying renal disease or systemic Mechanisms of proteinuria can be catego- 1-3 Author disclosure: No rel- disorder. When proteinuria coexists with rized as glomerular, tubular, secretory, or evant financial affiliations. hematuria, the likelihood of clinically signifi- overflow.1,2,12,13 Glomerular proteinuria is ▲ 1,2 Patient information: cant renal disease is higher. Further, pro- due to increased filtration of macromole- A handout on this topic is teinuria represents an independent risk factor cules, particularly albumin, across the glo- available at http://www. for the progression of nonglomerular or glo- merular capillary wall. This may be a result aafp.org/afp/2010/0915/ merular chronic kidney disease in children.4-9 of increased permeability of the glomerular p652.html. The Chronic Kidney Disease in Children basement membrane because of structural study demonstrated that persistent protein- defects of the membrane, loss of its negative uria with a high urine protein-to-creatinine charges, or direct damage by immune com- (UPr/Cr) ratio (more than 2 in patients with plexes.1,2,12 Glomerular proteinuria can also nonglomerular disease and more than 0.5 in occur when a reduced number of function- patients with glomerular disease) predicts ing nephrons leads to increased diffusion significant chronic kidney disease progres- of protein across the remaining glomeruli. sion.7 The challenge for the primary care Tubular proteinuria occurs when there is physician is to separate benign forms of pro- an increased excretion of normally filtered teinuria from those with clinical significance. low-molecular-weight proteins because of impaired reabsorption by the proximal Epidemiology tubules.12 Secretory proteinuria results Proteinuria is present in up to 10% of from oversecretion of certain proteins routine urine testing in school-aged chil- in the tubules, most notably the Tamm- dren, although this decreases to 0.1% with Horsfall proteins in interstitial nephri- repeated testing.10 The prevalence increases tis. Overflow proteinuria occurs when the 248Downloaded American from the Family American Physician Family Physician website at www.aafp.org/afp.www.aafp.org/afp Copyright © 2017 American AcademyVolume of Family 95, Physicians.Number 4 For ◆ theFebruary private, 15,noncom 2017- mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests. Proteinuria in Children Table 1. Causes of Proteinuria in Children Transient (functional) proteinuria Idiopathic plasma concentrations of low-molecular-weight pro- Related to a medical condition (e.g., fever, seizure) teins exceed the capacity of the tubules to reabsorb the Unrelated to a medical condition (e.g., exercise, stress, filtered protein. dehydration, cold exposure) Orthostatic proteinuria Etiology Persistent proteinuria Table 1 summarizes the diverse etiologies of proteinuria Glomerular in children.1 Adaptation (hyperfiltration) because of nephron loss (e.g., reflux nephropathy secondary to vesicoureteric reflux) TRANSIENT PROTEINURIA Alport syndrome Collagen vascular disease or vasculitis: Henoch-Schönlein Transient (functional) proteinuria is temporary and purpura, systemic lupus erythematosus resolves when the inciting factor remits or is removed. Diabetes mellitus Transient proteinuria can occur with a medical condi- Glomerulopathy: congenital nephrotic syndrome, focal tion (e.g., fever, seizure) or another trigger, such as exer- segmental glomerulosclerosis, immunoglobulin A cise, stress, dehydration, or cold exposure. It can also be nephropathy, membranoproliferative glomerulonephritis, idiopathic. mesangial proliferative glomerulonephritis, minimal change glomerulopathy ORTHOSTATIC PROTEINURIA Infections: group A beta-hemolytic streptococcus infection, viral infection (hepatitis B and C, human immunodeficiency Orthostatic proteinuria is the most common cause of pro- virus, infectious mononucleosis), other infections (malaria, teinuria in children, especially in adolescent males.1,14,15 syphilis) It is a benign condition without clinical significance.1,15 Malignancies (lymphoma, solid tumors) The diagnosis is suggested with normal protein excre- Toxin (mercury) tion (i.e., negative urine dipstick test result, or a UPr/Cr Tubulointerstitial ratio of 0.2 or less) in a spot, first-morning urine sample Acute tubular necrosis: aminoglycosides, amphotericin B, cisplatin, nonsteroidal anti-inflammatory after the patient has been supine for the entire night, but drugs, radiocontrast media increased protein excretion (i.e., positive urine dipstick Acute tubulointerstitial nephritis: nonsteroidal anti- test result, or a UPr/Cr ratio of more than 0.2) at least inflammatory drugs, penicillin, cephalosporins, quinolones, four to six hours after the patient has been upright.1-3 The sulfonamides, cimetidine (Tagamet), allopurinol cause of orthostatic proteinuria is not clear; however, the Polycystic kidney disease anatomic compression of the left renal vein has been Proximal renal tubular acidosis: Fanconi syndrome (global proximal tubule dysfunction), cystinosis, Lowe syndrome, suggested. galactosemia, Wilson disease Pyelonephritis PERSISTENT PROTEINURIA Toxins (lead, copper, mercury) Persistent proteinuria can be tubulointerstitial or more commonly glomerular in origin.1-3 Albumin and immu- Adapted with permission from Leung AK, Wong AH. Proteinuria in noglobulin G in the urine are the usual indicators for children. Am Fam Physician. 2010 ;82( 6 ):647. glomerular diseases. Glomerular diseases can have nephrotic and/or nephritic features, and distinguishing these features can help narrow the differential diagnosis. Clinical Evaluation Nephrotic syndrome is characterized by heavy protein- Table 2 lists clinical clues to the underlying cause of per- uria (more than 1,000 mg per m2 per day or a UPr/Cr sistent proteinuria.1 ratio of more than 2), edema, hypoalbuminemia (less than 2.5 g per dL [25 g per L]), and hyperlipidemia.16 Diagnostic Evaluation Nephritic features include hematuria; hypertension; oli- Proteinuria is often an incidental finding on urine dip- guria; and active urinary sediments, such as red blood stick testing or urinalysis. Children with asymptomatic cells, white blood cells, and cellular casts. proteinuria usually have the transient or orthostatic Tubulointerstitial diseases usually involve low- form. Figure 1 is an algorithm for the evaluation of molecular-weight proteins. Proteinuria associated with asymptomatic proteinuria in children.1-3 renal tubular disorders is generally mild. Tubular pro- If a urine dipstick test shows trace amounts of protein, teinuria rarely presents a diagnostic dilemma because the test should be repeated with first-morning urine. If the underlying disease is usually detected before the the first-morning test shows a trace or negative amount proteinuria.17 of protein, it should be repeated in one year to ensure February 15, 2017 ◆ Volume 95, Number 4 www.aafp.org/afp American Family Physician 249 Proteinuria in Children Table 2. Clinical Clues to the Cause of Persistent Proteinuria in Children Cause of proteinuria Clinical features Laboratory findings* Glomerular Adaptation to nephron History of vesicoureteric reflux or recurrent urinary tract Elevated serum creatinine or blood urea loss infection nitrogen
Recommended publications
  • A Dipstick Test Combined with Urine Specific Gravity Improved the Accuracy of Proteinuria Determination in Pregnancy Screening
    Kobe J. Med. Sci., Vol. 56, No. 4, pp. E165-E172, 2010 A Dipstick Test Combined with Urine Specific Gravity Improved the Accuracy of Proteinuria Determination in Pregnancy Screening NATSUKO MAKIHARA1, MINEO YAMASAKI1,2, HIROKI MORITA1, and HIDETO YAMADA1* 1Division of Obstetrics and Gynecology, Department of Surgery-related, and 2Division of Integrated Medical Education, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. Received 12 July 2010/ Accepted 20 August 2010 Key Words: dipstick test, pregnancy proteinuria, protein/creatinine ratio, urine specific gravity Proteinuria screening using a semi-quantitative dipstick test of the spot urine in antenatal clinic is known to have high false-positive rates. The aim of this study was to assess availability of a dipstick test combined with the urine specific gravity for the determination of pathological proteinuria. A dipstick test was performed on 582 urine samples obtained from 283 pregnant women comprising 260 with normal blood pressure and 23 with pregnancy-induced hypertension. The urine protein (P) and creatinine (C) concentrations, specific gravity (SG), P/C ratio were determined, and compared with dipstick test results. The P concentration increased along the stepwise augmentations in dipstick test result. Frequencies of the urine samples with 0.265 or more P/C ratio were 0.7% with − dipstick test result, 0.7% with the ± result, 3.3% with the 1+ result, and 88.9% with the ≥2+ result. However, if the urine specific gravity was low, frequencies of the high P/C ratio were 5.0% with ± dipstick test result and 9.3% with the 1+ result.
    [Show full text]
  • Proteinuria and Albuminuria: What’S the Difference? Cynthia A
    EXPERTQ&A Proteinuria and Albuminuria: What’s the Difference? Cynthia A. Smith, DNP, CNN-NP, FNP-BC, APRN, FNKF What exactly is the difference between TABLE Q the protein-to-creatinine ratio and the Persistent Albuminuria Categories microalbumin in the lab report? How do they compare? Category Description UACR For the non-nephrology provider, the options for A1 Normal to mildly < 30 mg/g evaluating urine protein or albumin can seem con- increased (< 3 mg/mmol) fusing. The first thing to understand is the impor- tance of assessing for proteinuria, an established A2 Moderately 30-300 mg/g marker for chronic kidney disease (CKD). Higher increased (3-30 mg/mmol) protein levels are associated with more rapid pro- A3 Severely > 300 mg/g gression of CKD to end-stage renal disease and in- increased (> 30 mg/mmol) creased risk for cardiovascular events and mortality in both the nondiabetic and diabetic populations. Abbreviation: UACR, urine albumin-to-creatinine ratio. Monitoring proteinuria levels can also aid in evaluat- Source: KDIGO. Kidney Int. 2012.1 ing response to treatment.1 Proteinuria and albuminuria are not the same low-up testing. While the UACR is typically reported thing. Proteinuria indicates an elevated presence as mg/g, it can also be reported in mg/mmol.1 Other of protein in the urine (normal excretion should be options include the spot urine protein-to-creatinine < 150 mg/d), while albuminuria is defined as an “ab- ratio (UPCR) and a manual reading of a reagent strip normal loss of albumin in the urine.”1 Albumin is a (urine dipstick test) for total protein.
    [Show full text]
  • Understanding What It Means to Have Protein in Your Urine Understanding What It Means to Have Protein in Your Urine
    UNDERSTANDINGUnderstanding WHAT ITYour MEANS TO HAVE Hemodialysis PROTEINAccess Options IN YOUR URINE 2 AAKP: Understanding What It Means to Have Protein in Your Urine Understanding What It Means to Have Protein in Your Urine The kidneys are best known for making urine. This rather simple description does not tell the whole story. This brochure describes other important functions of the kidneys; including keeping protein in the blood and not letting any of the protein in the liquid (plasma) part of blood escape into the urine. Proteinuria is when “Proteinuria” is when kidneys allow proteins to kidneys appear in the urine and be lost from the body. allow Proteinuria is almost never normal, but it can proteins to be normal - rarely - in some healthy, active appear in the urine children or young adults. and be The kidneys are paired organs located on either lost from the body. side of the backbone. They are located at the Proteinuria level of the lowest part of the rib cage. They are is almost the size of an adult fist (4.5 – 5 inches in length). never Together the two kidneys receive a quarter of normal, but it can the blood that is pumped from the heart every be normal minute. This large blood flow is needed in order - rarely - for the kidneys to do one of the kidneys’ main in some jobs: healthy, active • remove waste products in the blood every children day or young adults. • keep the body in balance by eliminating the extra fluids and salts we consume on a regular basis.
    [Show full text]
  • Storm in a Pee Cup: Hematuria and Proteinuria
    Storm in a Pee Cup: Hematuria and Proteinuria Sudha Garimella MD Pediatric Nephrology, Children's Hospital-Upstate Greenville SC Conflict of Interest • I have no financial conflict of interest to disclose concerning this presentation. Objectives • Interpret the current guidelines for screening urinalysis, and when to obtain a urinalysis in the pediatric office. • Interpret the evaluation of asymptomatic/isolated proteinuria and definitions of abnormal ranges. • Explain the evaluation and differential diagnosis of microscopic hematuria. • Explain the evaluation and differential diagnosis of gross hematuria. • Explain and discuss appropriate referral patterns for hematuria. • Racial disparities in nephrology care 1. APOL-1 gene preponderance in African Americans and risk of proteinuria /progression(FSGS) 2. Race based GFR calculations which have caused harm 3. ACEI/ARB usage in AA populations: myths and reality Nephrology Problems in the Office • Hypertension • Proteinuria • Microscopic Hematuria • Abnormal Renal function The Screening Urinalysis • Choosing Wisely: • Don’t order routine screening urine analyses (UA) in healthy, asymptomatic pediatric patients as part of routine well child care. • One study showed that the calculated false positive/transient abnormality rate approaches 84%. • Population that deserves screening UA: • patients who are at high risk for chronic kidney disease (CKD), including but not necessarily limited to patients with a personal history of CKD, acute kidney injury (AKI), congenital anomalies of the urinary tract, acute nephritis, hypertension (HTN), active systemic disease, prematurity, intrauterine growth retardation, or a family history of genetic renal disease. • https://www.choosingwisely.org/societies/american-academy-of-pediatrics-section-on- nephrology-and-the-american-society-of-pediatric-nephrology/ Screening Urinalysis: Components A positive test for leukocyte esterase may be seen in genitourinary inflammation, irritation from instrumentation or catheterization, glomerulonephritis, UTIs and sexually transmitted infections.
    [Show full text]
  • Hematuria in the Child
    Hematuria and Proteinuria in the Pediatric Patient Laurie Fouser, MD Pediatric Nephrology Swedish Pediatric Specialty Care Hematuria in the Child • Definition • ³ 1+ on dipstick on three urines over three weeks • 5 RBCs/hpf on three fresh urines over three weeks • Prevalence • 4-6% for microscopic hematuria on a single specimen in school age children • 0.3-0.5% on repeated specimens Sources of Hematuria • Glomerular or “Upper Tract” – Dysmorphic RBCs and RBC casts – Tea or cola colored urine – Proteinuria, WBC casts, renal tubular cells • Non-Glomerular or “Lower Tract” – RBCs have normal morphology – Clots/ Bright red or pink urine The Glomerular Capillary Wall The Glomerular Capillary Wall Glomerular Causes of Hematuria • Benign or self-limiting – Benign Familial Hematuria – Exercise-Induced Hematuria – Fever-Induced Hematuria Glomerular Causes of Hematuria • Acute Glomerular Disease – Poststreptococcal/ Postinfectious – Henoch-Schönlein Purpura – Sickle Cell Disease – Hemolytic Uremic Syndrome Glomerular Causes of Hematuria • Chronic Glomerular Disease – IgA Nephropathy – Henoch-Schönlein Purpura or other Vasculitis – Alport Syndrome – SLE or other Collagen Vascular Disease – Proliferative Glomerulonephritis Non-Glomerular Hematuria • Extra-Renal • UTI • Benign urethralgia +/- meatal stenosis • Calculus • Vesicoureteral Reflux, Hydronephrosis • Foreign body • Rhabdomyosarcoma • AV M • Coagulation disorder Non-Glomerular Hematuria • Intra-Renal • Hypercalciuria • Polycystic Kidney Disease • Reflux Nephropathy with Renal Dysplasia •
    [Show full text]
  • Blood Or Protein in the Urine: How Much of a Work up Is Needed?
    Blood or Protein in the Urine: How much of a work up is needed? Diego H. Aviles, M.D. Disclosure • In the past 12 months, I have not had a significant financial interest or other relationship with the manufacturers of the products or providers of the services discussed in my presentation • This presentation will not include discussion of pharmaceuticals or devices that have not been approved by the FDA Screening Urinalysis • Since 2007, the AAP no longer recommends to perform screening urine dipstick • Testing based on risk factors might be a more effective strategy • Many practices continue to order screening urine dipsticks Outline • Hematuria – Definition – Causes – Evaluation • Proteinuria – Definition – Causes – Evaluation • Cases You are about to leave when… • 10 year old female seen for 3 day history URI symptoms and fever. Urine dipstick showed 2+ for blood and no protein. Questions? • What is the etiology for the hematuria? • What kind of evaluation should be pursued? • Is this an indication of a serious renal condition? • When to refer to a Pediatric Nephrologist? Hematuria: Definition • Dipstick > 1+ (large variability) – RBC vs. free Hgb – RBC lysis common • > 5 RBC/hpf in centrifuged urine • Can be – Microscopic – Macroscopic Hematuria: Epidemiology • Microscopic hematuria occurs 4-6% with single urine evaluation • 0.1-0.5% of school children with repeated testing • Gross hematuria occurs in 1/1300 Localization of Hematuria • Kidney – Brown or coke-colored urine – Cellular casts • Lower tract – Terminal gross hematuria – (Blood
    [Show full text]
  • Tubular Proteinuria Defined by a Study of Dent's
    Kidney International, Vol. 57 (2000), pp. 240±249 Tubular proteinuria de®ned by a study of Dent's (CLCN5 mutation) and other tubular diseases ANTHONY G.W. NORDEN,STEVEN J. SCHEINMAN,MONIQUE M. DESCHODT-LANCKMAN, MARTA LAPSLEY,JOEÈ LLE L. NORTIER,RAJESH V. THAKKER,ROBERT J. UNWIN, and OLIVER WRONG Department of Chemical Pathology, Chase Farm Hospital, Barnet and Chase Farm Hospitals NHS Trust, En®eld, Middlesex, England, United Kingdom; Department of Medicine, State University of New York Health Science Center, Syracuse, New York, USA; Laboratoire de Recherche sur le Metabolisme des Peptides and Nephrology Department, Erasme Hospital, Brussels, Belgium; Nuf®eld Department of Medicine, John Radcliffe Hospital, Headington, Oxford, and Center for Nephrology, Royal Free and University College London Medical School, University College London, London, England, United Kingdom Tubular proteinuria de®ned by a study of Dent's (CLCN5 The term ªtubular proteinuriaº has been applied to mutation) and other tubular diseases. an electrophoretic pattern of urine proteins found in Background. The term ªtubular proteinuriaº is often used patients with chronic proximal renal tubular disease interchangeably with ªlow molecular weight proteinuriaº (LMWP), although the former implies a de®nite etiology. A [1, 2]. This pattern of proteins represents increased excre- speci®c quantitative de®nition of tubular proteinuria is needed, tion of several low molecular weight (LMW) proteins, and we address this by studying ®ve different renal disorders. as well as albumin
    [Show full text]
  • Tubular Proteinuria and Vitamin D Deficiency in Sickle Cell Disease By
    Title Page Tubular Proteinuria and Vitamin D Deficiency in Sickle Cell Disease by Megan Laura Gliozzi BS, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of Graduate School of Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Committee Membership Page UNIVERSITY OF PITTSBURGH GRADUATE SCHOOL OF PUBLIC HEALTH This dissertation was presented by Megan Laura Gliozzi It was defended on May 30, 2019 and approved by David N. Finegold, MD Professor, Department of Human Genetics Graduate School of Public Health, University of Pittsburgh James R. Johnston, MD Professor, Department of Medicine School of Medicine, University of Pittsburgh Zsolt Urban, PhD Associate Professor, Department of Human Genetics Graduate School of Public Health, University of Pittsburgh Dissertation Advisor: Ora A. Weisz, PhD Professor, Department of Medicine and Cell Biology School of Medicine, University of Pittsburgh ii Copyright © by Megan Laura Gliozzi 2019 iii Abstract Ora A. Weisz, PhD Tubular Proteinuria and Vitamin D Deficiency in Sickle Cell Disease Megan Laura Gliozzi, PhD University of Pittsburgh, 2019 Abstract Kidney disease is a significant complication of sickle cell disease (SCD) with great public health concern, causing over 18% of total patient mortality. Proximal tubule (PT) dysfunction, including tubular proteinuria, is a common early symptom of kidney disease in SCD patients and can lead to chronic kidney disease. Although not well understood, PT dysfunction in SCD is thought to be caused by exposure to higher cell-free hemoglobin (Hb) concentrations from increased red blood cell hemolysis. Hb is filtered by the glomerulus to enter the tubule lumen, where it is reabsorbed by PT cells upon binding to multiligand receptors megalin and cubilin.
    [Show full text]
  • Proteinuria and Nephrotic Syndrome
    Proteinuria and Nephrotic Syndrome Rebecca Hjorten, MD Division of Nephrology Speaker Disclosures • Relevant Financial Relationships: No disclosure. • Relevant Nonfinancial Relationships: No disclosure. • I have no actual or potential conflict of interest in relation to this program/presentation. Division of NephrologyDivision of Nephrology Urine Dip Concern for Positive for Urine Positive for Glomerulonephritis Protein Protein AND Blood (GN) …PIGN, MPGN, IgA, HSP Lupus, ANCA vasculitis, Urine Positive for Anti-GBM Asymptomatic Protein AND NORMAL Concerning Ex. Nephrotic Syndrome False Positive Symptoms Non-Significant Levels Persistent of Urine Protein Asymptomatic Consider Proteinuria Further Orthostatic Proteinuria Evaluation and Referral to Transient Proteinuria Pediatric Nephrology Division of Nephrology Urine Dip Concern for Positive for Urine Positive for Glomerulonephritis Protein Protein AND Blood (GN) …PIGN, MPGN, IgA, HSP Lupus, ANCA vasculitis, Urine Positive for Anti-GBM Asymptomatic Protein AND NORMAL Concerning Ex. Nephrotic Syndrome False Positive Symptoms Non-Significant Levels Persistent of Urine Protein Asymptomatic Consider Proteinuria Further Orthostatic Proteinuria Evaluation and Referral to Transient Proteinuria Pediatric Nephrology Division of Nephrology Objectives • Asymptomatic Proteinuria without Hematuria • Identification of transient and orthostatic proteinuria • Initial workup and referral or persistent proteinuria • Nephrotic syndrome • Early recognition of nephrotic syndrome • Initiation of management •
    [Show full text]
  • Interpretation of Urine Analysis
    UNDERSTANDING URINALYSIS Slides __________________________________________________________________________________________________________ Urine Analysis Interpretation of • Appearance or color • Specific gravity • pH Urine Analysis • Leukocyte esterase March 2015 • Nitrites • Urobilinogen • Bilirubin • Glucose • Ketones • Protein • Blood • Microscopic examination Denise K Link, MPAS, PA-C The University of Texas Southwestern Medical Center [email protected] Proper Specimen Collection Routine Urine Analysis Appearance Chemical tests (dipstick) • Teach every patient how to collect proper specimen • pH 1. Clean-catch midstream • Protein 2. In patients with indwelling urinary catheters, a • Glucose recently produced urine sample should be obtained • Ketones (directly from the catheter tubing) • Blood 3. Best examined when fresh. Chemical composition • Urobilinogen of urine changes with standing and formed • Bilirubin elements degenerate with time • Nitrites • Leukocyte esterase 4. Refrigerated is best when infection is suspected • Specific gravity 5. First voided morning urine is ideal when evaluating suspected glomerulonephritis Microscopic examination of spun urinary sediment Urine Analysis with Microscopy Dipstick Methodology • Paper tabs impregnated with chemical reagents • Reagents are chromogenic • Reagents are timed developed • Some rxns are highly specific • Other are sensitive to the presence of interfering substances or extremes of pH • Rapid, semiquantitative assessment of urinary characteristics © 2015 National Kidney Foundation,
    [Show full text]
  • Proteinuria in Dent Disease: a Review of the Literature
    Pediatr Nephrol DOI 10.1007/s00467-016-3499-x REVIEW Proteinuria in Dent disease: a review of the literature Youri van Berkel1 & Michael Ludwig2 & Joanna A. E. van Wijk1 & Arend Bökenkamp1 Received: 26 April 2016 /Revised: 23 August 2016 /Accepted: 25 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract edema and hypoalbuminemia should prompt genetic testing. Background Dent disease is a rare X-linked recessive proxi- Even with normal renal function, glomerulosclerosis and mal tubulopathy caused by mutations in CLCN5 (Dent-1) or tubulointerstitial fibrosis are present in Dent disease. The role OCRL (Dent-2). As a rule, total protein excretion (TPE) is low of proteinuria in the course of the disease needs to be exam- in tubular proteinuria compared with glomerular disease. ined further in longitudinal studies. Several authors have reported nephrotic-range proteinuria (NP) and glomerulosclerosis in Dent disease. Therefore, we Keywords Dent disease . CLCN5 . OCRL . Proteinuria . aimed to analyze protein excretion in patients with document- Nephrotic syndrome . Low-molecular weight proteinuria . ed CLCN5 or OCRL mutations in a systematic literature Systematic review review. Design PubMed and Embase were searched for cases with documented CLCN5 or OCRL mutations and (semi-)quanti- Introduction tative data on protein excretion. The most reliable data (i.e., TPE > protein–creatinine ratio > Albustix) was used for NP Dent disease, a rare X-linked recessive tubulopathy, was first classification. described in 1964 in two unrelated cases presenting with renal Results Data were available on 148 patients from 47 reports: tubular rickets, hypercalciuria, and tubular proteinuria [1].
    [Show full text]
  • Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease
    Article Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease Kalani L. Raphael,1,2 Sarah Gilligan,1 and Joachim H. Ix3,4,5 Abstract Background and objectives Low urine ammonium excretion is associated with ESRD in CKD. Few laboratories measure urine ammonium, limiting clinical application. We determined correlations between urine 1 fi Division of Nephrology, ammonium, the standard urine anion gap, and a modi ed urine anion gap that includes sulfate and Department of Internal phosphate and compared risks of ESRD or death between these ammonium estimates and directly measured Medicine, University of ammonium. Utah Health, Salt Lake City, Utah; 2 Design, setting, participants, & measurements We measured ammonium, sodium, potassium, chloride, Nephrology Section, Veterans Affairs Salt phosphate, and sulfate from baseline 24-hour urine collections in 1044 African-American Study of Kidney Lake City Health Care Disease and Hypertension participants. We evaluated the cross-sectional correlations between urine System, Salt Lake City, ammonium, the standard urine anion gap (sodium + potassium 2 chloride), and a modified urine anion gap Utah; 3Division of that includes urine phosphate and sulfate in the calculation. Multivariable-adjusted Cox models determined Nephrology- fi Hypertension, the associations of the standard urine anion gap and the modi ed urine anion gap with the composite end Department of point of death or ESRD; these results were compared with results using urine ammonium as the predictor of Medicine and interest. 5Division of Preventive Medicine, Department Results The standard urine anion gap had a weak and direct correlation with urine ammonium (r=0.18), whereas of Family Medicine and fi r 2 Public Health, the modi ed urine anion gap had a modest inverse relationship with urine ammonium ( = 0.58).
    [Show full text]