Slave Craton and Wopmay Orogen, NW Canada

Total Page:16

File Type:pdf, Size:1020Kb

Slave Craton and Wopmay Orogen, NW Canada Canadian Journal of Earth Sciences Parentage of Archean basement within a Paleoproterozoic orogen and implications for on-craton diamond preservation: Slave craton and Wopmay orogen, NW Canada Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2016-0059.R1 Manuscript Type: Article Date Submitted by the Author: 01-Sep-2016 Complete List of Authors: Ootes, Luke; Northwest Territories Geological Survey; British Columbia Geological DraftSurvey; Arctic Institute of North America Jackson, Valerie; Northwest Territories Geological Survey; Arctic Institute of North America; 3126 Westridge Pl Davis, William; Geological Survey of Canada Bennett, Venessa; Geomantia Consulting Smar, Leanne; Desert Star Resources Cousens, Brian; Carleton University, Earth Sciences Wopmay orogen, Archean basement, rift-related thermal weakening, Slave Keyword: craton, diamond preservation https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 80 Canadian Journal of Earth Sciences 1 Parentage of Archean basement within a Paleoproterozoic orogen and implications for on- craton diamond preservation: Slave craton and Wopmay orogen, NW Canada Luke Ootes* and Valerie A. Jackson^ Northwest Territories Geological Survey, Box 1320, Yellowknife, NT, Canada X1A 2L9 and Arctic Institute of North America, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 ^current address: * British Columbia Geological Survey, Box 9333 Stn Prov Govt, Victoria, BC, Canada V8W 9N3 corresponding author: [email protected] Ph. 250-387-2021 ^3126 Westridge Pl, Victoria, BC, Canada V9E 1C8 [email protected] William J. Davis Draft Geological Survey of Canada, 601 Booth Street, Ottawa, ON, Canada K1A 0E8 [email protected] Venessa Bennett Geomantia Consulting, 33 Roundel Road, Whitehorse, YT, Canada Y1A 3H4 [email protected] Leanne Smar Desert Star Resources, 717-1030 West Georgia St,, Vancouver, BC, Canada V6E 2Y3 [email protected] Brian L. Cousens Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 80 2 Abstract The Wopmay orogen is a Paleoproterozoic accretionary belt preserved to the west of the Archean Slave craton, NW Canada. Reworked Archean crystalline basement occurs in the orogen and new bedrock mapping, U-Pb geochronology, and Sm-Nd isotopic data further substantiate a Slave craton parentage for this basement. Detrital zircon results from unconformably overlying Paleoproterozoic supracrustal rocks also support a Slave craton provenance. Rifting of the Slave margin began at ca. 2.02 Ga with a second rift phase constrained between ca. 1.92 and 1.89 Ga, resulting in thermal weakening of the Archean basement and allowing subsequent penetrative deformation during the Calderian orogeny (ca. 1.88 to 1.85 Ga). The boundary between the western Slave craton and the reworked Archean basement in the southern Wopmay orogen is interpreted as the rifted cratonic margin, which later acted as a rigid backstop during compressional deformation. Age-isotopic characteristics of plutonic phases track the extent and evolution of these processes that left penetratively deformed Archean basement, Paleoproterozoic cover,Draft and plutons in the west, and ‘rigid’ Archean Slave craton to the east. Diamond-bearing kimberlite occurs across the central and eastern parts of the Slave craton, but kimberlite (diamond-bearing or not) has not been documented west of ~114 ⁰W. It is proposed that, while the crust of the western Slave craton escaped thermal weakening, the mantle did not and was moved out of the diamond stability field. The Paleoproterozoic extension- convergence cycle preserved in the Wopmay orogen provides a reasonable explanation as to why the western Slave craton appears to be diamond-sterile. Keywords: Wopmay orogen, internal metamorphic zone, Archean basement, rift-related thermal weakening, Slave craton, diamond preservation https://mc06.manuscriptcentral.com/cjes-pubs Page 3 of 80 Canadian Journal of Earth Sciences 3 INTRODUCTION The Slave craton, in northwest Canada, is a crustal block that formed and ‘cratonized’ during the Archean eon (Kusky 1989; Bleeker 2002; Davis et al. 2003a; Helmstaedt 2009; Heaman and Pearson 2010). Immediately west of the Slave craton is the Wopmay orogen, which contains Archean basement exposures and Paleoproterozoic supracrustal and plutonic rocks (St- Onge et al. 1983, 1991; Hoffman 1984; King 1987; Hildebrand et al. 1991, 2010; Jackson 2008; Hoffman et al. 2011; Jackson and Ootes 2012; Jackson et al. 2013). Collectively, these rocks underwent penetrative ductile deformation and associated metamorphism during the Paleoproterozoic (King 1987; St-Onge et al. 1991; Jackson et al. 2013). Two competing interpretations have been proposed for the parentage of the deformed Archean basement in Wopmay orogen: 1) it originated as part of the Slave craton, but underwent reworking in the Proterozoic (Jackson et al. 2013), or 2) it was part of an exotic micro-continent (Hottah terrane) and structurally emplaced over the western Slave craton and its margin, and is now preserved as a klippe (Hildebrand et al. 2010). Draft In this contribution we present results from bedrock mapping, U-Pb zircon geochronology, and whole-rock Nd isotopic fingerprinting of the Archean basement exposures in the Wopmay orogen. We also present detrital zircon U-Pb data from metasedimentary rocks that unconformably overly this Archean basement. The integration of these datasets further demonstrates that the Archean basement exposures and overlying sedimentary rocks have a Slave craton parentage/provenance and provide a revised understanding of the architecture of the rifted western cratonic margin. In turn, this has implications for the Slave craton’s lithospheric evolution and provides insights into the diamond fertility of its western region. For example, diamond-bearing kimberlites are prevalent across the central and eastern parts of the Slave craton, but after intense exploration efforts during the past two decades, no on-craton kimberlite has been discovered west of 114 ⁰W, or within the eastern parts of the Wopmay orogen. In northern Canada, diamond-bearing kimberlites have generally been discovered using dispersed diamond-indicator minerals in glacial till. Have no kimberlites been discovered because they do not contain diamonds and therefore the glacially dispersed till does not contain the appropriate diamond indicator minerals? On-craton studies have yet to provide a resolution of this paradox; however, the Archean basement in the adjacent Paleoproterozoic orogenic belt may contain the clues for resolving western Slave craton diamond enigma. https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 4 of 80 4 GEOLOGICAL BACKGROUND Slave Craton The Slave craton (Fig. 1) is a 4.02 to 2.55 Ga composite cratonic block (Kusky 1989; Bleeker 2002; Davis et al. 2003a, b; Snyder 2008; Helmstaedt 2009; Heaman and Pearson 2010). The west-central Slave craton contains bedrock older than ca. 2.85 Ga, preserved as gneissic basement complexes and a late Mesoarchean supracrustal cover sequence (Bleeker et al. 1999, 2000; Sircombe et al. 2001; Bleeker 2002; Ketchum et al. 2004; Reimink et al. 2014). Stratigraphically above the basement and cover are Neoarchean volcanic belts (>2.73 Ga to ca. 2.66 Ga; e.g., Bleeker 2002) and greywacke-mudstone successions (ca. 2.66 to 2.62 Ga; Ootes et al. 2009; Haugaard et al. 2016), as well as late polymictic conglomerates and sandstones (<2.6 Ga; Corcoran and Mueller 2002). The western Slave craton is dominated by ca. 2630 to 2580 Ma plutonic rocks (van Breemen et al. 1992; Davis and BleekerDraft 1999; Bennett et al. 2005), and the youngest identified is the Stagg granite, dated at 2565.4 ± 4.1 Ma (Bleeker et al. 2007). Metamorphic grade in the western Slave craton is variable, but generally characterized by high-temperature, low-pressure, greenschist to granulite-facies assemblages preserved in both volcanic and sedimentary rocks and spatially associated with granitic intrusions (Davis and Bleeker 1999; Pehrsson et al. 2000; Bennett et al. 2005; Ootes et al. 2005). Upper-amphibolite to granulite-facies assemblages are locally well-preserved and metamorphism occurred between ca. 2600 and 2580 Ma (e.g., Pehrsson et al. 2000; Bennett et al. 2005; Ootes et al. 2005; Jackson et al. 2006). Metamorphism in the deep crust continued to ca. 2550 Ma, as recorded by lower crustal xenoliths recovered from kimberlites (Davis et al. 2003a). The timing of penetrative ductile deformation in the Slave craton is best documented in the Duncan Lake Group greywacke-mudstone successions, where D1-D2 occurred between ca. 2650 and 2590 Ma, with a younger D 3 overprint (Bleeker and Beaumont-Smith 1995; Davis and Bleeker 1999; Bleeker 2002; Ootes et al. 2005). The Mesoarchean and older basement has a more complicated history of deformation (e.g., Bleeker et al. 1999; Ketchum et al. 2004), whereas plutonic rocks younger than ca. 2590 Ma do not contain penetrative deformation fabrics (Pehrsson 2002; Bennett et al. 2005; Jackson et al. 2006). The Slave craton does not contain post-Archean ductile deformation-related fabrics, nor metamorphic assemblages, with the possible exception of its eastern boundary with the Thelon orogen https://mc06.manuscriptcentral.com/cjes-pubs Page 5 of 80 Canadian Journal of Earth Sciences 5 (Culshaw 1991). The Slave craton was,
Recommended publications
  • The Late Tectonic Evolution of the Slave Craton and Formation of Its Tectosphere
    The Late Tectonic Evolution of the Slave Craton and Formation of its Tectosphere W.J. Davis, W. Bleeker, K. MacLachlan, Jones, A.G. and Snyder, D. An outstanding question in Archean tectonics is the relationship between thick, depleted lithospheric keels that presently underlie the cratons and the overlying crustal section. Evidence for Archean diamonds and Re-Os model ages of cratonic peridotites argue for the development of stable lithospheric mantle early in a cratons history, at least in part synchronous with crust formation or stabilisation (Pearson 1999). The late tectonic evolution of cratons is complex and involves extensive magmatism, deformation, and metamorphism that significantly post-date the timing of crust formation. Many of these tectonic events are difficult to reconcile with early development of thick tectosphere and suggest that crust-mantle coupling and stabilization occurred late in the orogenic development of cratons. Over the past decade the Slave craton in northwestern Laurentia, has emerged as a major diamondiferous craton. The extensive and well documented geological record of the Slave craton, provides a new crustal perspective on the development of diamond-bearing tectosphere. In this contribution we describe the late tectonic evolution of the Slave craton based on field and geochronological studies, supplemented by geochronological data from lower crustal xenoliths to argue that stabilisation of the cratonic root, certainly to depths of 200 km, was most likely a late feature of the craton. Geological Background The Slave is a small craton bounded by Paleoproterozic orogenic belts on its east and west. The craton is characterized throughout its central and western part by a Mesoarchean basement (4.0 -2.9Ga) referred to as the Central Slave Basement Complex (CSBC; Bleeker et al 1999), and its cover sequence, with isotopically juvenile (<2.85 Ga?) but undefined basement in the east (Thorpe et al 1992; Davis& Hegner, 1992; Davis et al.
    [Show full text]
  • Geology of the Eoarchean, >3.95 Ga, Nulliak Supracrustal
    ÔØ ÅÒÙ×Ö ÔØ Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya, Shinji Yamamoto, Shogo Aoki, Yusuke Sawaki, Akira Ishikawa, Takayuki Tashiro, Keiko Koshida, Masanori Shimojo, Kazumasa Aoki, Kenneth D. Collerson PII: S0040-1951(15)00269-3 DOI: doi: 10.1016/j.tecto.2015.05.003 Reference: TECTO 126618 To appear in: Tectonophysics Received date: 30 December 2014 Revised date: 30 April 2015 Accepted date: 17 May 2015 Please cite this article as: Komiya, Tsuyoshi, Yamamoto, Shinji, Aoki, Shogo, Sawaki, Yusuke, Ishikawa, Akira, Tashiro, Takayuki, Koshida, Keiko, Shimojo, Masanori, Aoki, Kazumasa, Collerson, Kenneth D., Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics, Tectonophysics (2015), doi: 10.1016/j.tecto.2015.05.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Geology of the Eoarchean, >3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics Tsuyoshi Komiya1*, Shinji Yamamoto1, Shogo Aoki1, Yusuke Sawaki2, Akira Ishikawa1, Takayuki Tashiro1, Keiko Koshida1, Masanori Shimojo1, Kazumasa Aoki1 and Kenneth D.
    [Show full text]
  • I a Petrographic, Geochemical and Isotopic Study of the 780 Ma
    A petrographic, geochemical and isotopic study of the 780 Ma Gunbarrel Large Igneous Province, western North America By Alana J. Mackinder A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs In partial fulfillment of the requirements for the degree of Master of Science In Earth Sciences Carleton University Ottawa, Ontario © 2014 Alana J. Mackinder i Abstract On the western margin of North America lie dykes, sills and volcanic rocks which define a magmatic episode at 780 Ma. These units have been collectively termed the Gunbarrel Large Igneous Province (LIP) and share remarkably similar petrographical, geochemical and isotopic signatures indicating a single homogeneous source. The Irene and Huckleberry metavolcanic rocks of Washington State were correlated to the Gunbarrel LIP based on similar ages, but were found to not be related based on geochemistry and isotopic analysis. The timing of the Gunbarrel LIP coincides with the break-up of Rodinia, and Gunbarrel samples were compared to coeval magmatism from South China to test the “Missing Link” reconstruction model. While some mafic dykes have similar Nd isotopic ratios, no definitive correlations could be found between the different magmatic events. Finally, LIPs play a key role in housing various economic deposits and the Gunbarrel magmas show potential for being a Ni-Cu-PGE target. ii Acknowledgements First and foremost I would like to thank my co-supervisors Dr. Brian Cousens and Dr. Richard Ernst for providing me with this amazing project and helping me work through it and gain new knowledge throughout my 2 years as a graduate student. I would like to thank the NSERC CRDPJ 419503-11 grant which funded my research work and the Large Igneous Provinces – Supercontinent Reconstruction Group (www.supercontinent.org) funded by our industry sponsors for opportunities to present my work and with which this project originated.
    [Show full text]
  • The Case for Separate Taltson and Thelon Orogenies: Evidence from the Shield in Western Saskatchewan
    The case for separate Taltson and Thelon orogenies: Evidence from the Shield in western Saskatchewan C.D. Card* and K.E. Ashton Saskatchewan Ministry of Energy and Resources, Northern Geological Survey, 200-2101 Scarth St., Regina, SK S4P 2H9; e-mail: [email protected] and K.M. Bethune Department of Geology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2 SUMMARY The Taltson magmatic zone is inferred to be the southern extension of the Thelon tectonic zone; together they are thought to have developed during a ca. 2.02-1.90 Ga orogeny that accreted the Rae and Slave cratons. The continuity between the Thelon tectonic and Taltson magmatic zones is predicated upon the similarity of the ages of igneous rocks and a linear aeromagnetic high that apparently links the two. The Taltson magmatic zone contains two suites of metaplutonic rocks: ca. 1.986-1.1959 Ga continental arc type plutons; and 1.955-1.910 Ga peraluminous plutons. They intruded a basement complex dominated by Mesoarchean to Paleoproterozoic orthogneisses and granitoid rocks. Peak metamorphic conditions were between 1.94 and 1.93 Ga. New mapping south of the western Athabasca Basin indicates that plutons of generally intermediate composition extend from the Virgin River shear zone beneath the western Athabasca Basin. The limited available geochronological data supports that interpretation as rocks with ages similar to the continental arc type plutons in the Taltson magmatic zone are found near the Virgin River shear zone, beneath the western Athabasca Basin and along basin‟s western margin. Plutons of similar age and composition to the peraluminous plutons of the Taltson magmatic zone and similar metamorphic ages are found in the basement to the western Athabasca Basin and the exposed Shield to the south.
    [Show full text]
  • The Calderian Orogeny in Wopmay Orogen (1.9 Ga), Northwestern Canadian Shield
    The Calderian orogeny in Wopmay orogen (1.9 Ga), northwestern Canadian Shield Robert S. Hildebrand1,†, Paul F. Hoffman2,§, and Samuel A. Bowring3 1Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA 2Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Building 54-1126, Cambridge, Massachusetts 02139, USA ABSTRACT continent collisions, perhaps because the evolutionary model that incorporates progres- attenuated arc crust, coupled with the ex- sive rollback of the lower plate and extension of The Wopmay orogen is a Paleoproterozoic tended crust of the lower plate, never gen- the arc terrane on the upper plate, emplacement orogenic belt formed in part by the accre- erates severely overthickened crust. Rise of of the leading edge of the extended continental tion of Hottah terrane, an east-facing conti- asthenospheric mantle due to slab breakoff arc upon the western margin of Slave craton, nental magmatic arc, to the western margin generates rapid uplift, erosion, and collapse failure of the subducting plate during the colli- of the Archean Slave craton at ca. 1.88 Ga. of the mountains built during collision. sion, and the subsequent development of a new The arc-continent collision was responsible subduction zone, or possible propagation of an for the Calderian orogeny. Just prior to the INTRODUCTION older one, of opposite polarity outboard of the collision, arc volcanism of the Hottah terrane amalgamated collision zone—all within about had migrated trenchward and changed in Located in the northwest part of the Canadian 10 m.y.
    [Show full text]
  • The Nature of Earth's First Crust
    The nature of Earth’s first crust Richard Carlson, Marion Garçon, Jonathan O’neil, Jesse Reimink, Hanika Rizo To cite this version: Richard Carlson, Marion Garçon, Jonathan O’neil, Jesse Reimink, Hanika Rizo. The nature of Earth’s first crust. Chemical Geology, Elsevier, 2019, 530, pp.119321. 10.1016/j.chemgeo.2019.119321. hal- 02344389 HAL Id: hal-02344389 https://hal.uca.fr/hal-02344389 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Nature of Earth’s First Crust Richard W. Carlson Department of Terrestrial Magnetism Carnegie Institution for Science 5241 Broad Branch Road, NW Washington, DC 20015 USA Marion Garçon Laboratoire Magmas et Volcans 6 Avenue Blaise Pascal, TSA 60026 63178 Aubiere Cedex, France Jonathan O’Neil Department of Earth and Environmental Sciences University of Ottawa Carleton-Ottawa Geoscience Centre Ottawa, Ontario, Canada K1N 6N5 Jesse Reimink Department of Terrestrial Magnetism Carnegie Institution for Science 5241 Broad Branch Road, NW Washington, DC 20015 USA Hanika Rizo Department of Earth Sciences Carleton University Carleton-Ottawa Geoscience Centre Ottawa, Ontario, Canada K1S 5B6 Accepted for Chemical Geology September 26, 2019 1 Abstract: Recycling of crust into the mantle has left only small remnants at Earth’s surface of crust produced within a billion years of Earth formation.
    [Show full text]
  • Coronation Loop Resurrected: Oscillatory Apparent Polar Wander of Orosirian (2.05–1.8 Ga) Paleomagnetic Poles from Slave Craton
    Precambrian Research 179 (2010) 121–134 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05–1.8 Ga) paleomagnetic poles from Slave craton Ross N. Mitchell a,∗, Paul F. Hoffman b,c, David A.D. Evans a a Department of Geology & Geophysics, Yale University, 210 Whitney Ave, New Haven, CT 06511, USA b Department of Earth & Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA c School of Earth and Ocean Sciences, University of Victoria, Box 1700, Victoria, BC, Canada V8W 2Y2 article info abstract Article history: The Coronation loop is a 110◦ arcuate sweep of 15 paleomagnetic poles with ages of ca. 1950–1850 Ma, Received 20 September 2009 derived from contemporaneous basins on the western (Coronation), southern (Great Slave) and eastern Received in revised form 9 February 2010 (Kilohigok) margins of the Slave craton in the northwestern Canadian shield. Although the paleomag- Accepted 11 February 2010 netic results are either demonstrated as primary or most parsimoniously interpreted as such, it is likely they were subsequently rotated shortly after deposition during conjugate transcurrent faulting along the conjugate McDonald (Great Slave) and Bathurst (Kilohigok) strike-slip fault systems. No rotation is Keywords: expected of poles from the epicratonic Coronation margin. Previous analyses have debated the amounts Coronation loop Paleomagnetism of local rotations in the other basins, with one end-member view that the spread in paleomagnetic poles is Slave craton entirely due to local rotations. Here we propose that, relative to the principal axis of compression for con- Paleoproterozoic jugate faulting, the far-field Bathurst and McDonald fault systems have rotated (equally and oppositely) ◦ ◦ ◦ Great Slave Supergroup 12 to widen an original 60 geometry to the present-day 84 angle.
    [Show full text]
  • Early Earth University of Maryland
    Michael Brown Early Earth University of Maryland Bleeker, 2003, Lithos Gerya, 2014, Gondwana Res. Questions: Was there only one style of “Precambrian geodynamics”? Or, was the geodynamic regime on a hotter early Earth different? Did a subduction/mobile-lid plate tectonics regime only begin sometime during the (late) Archean? If so, what preceded it? Acasta Gneiss complex on the Old rocks are rare! west side of the Slave craton Earth’s undisputed oldest crustal rocks are components in the Acasta Gneiss at 4.03 Ga (Images courtesy of Ian Williams, ANU) Earth’s oldest known crustal material? Zircons in the Jack Hills metasedimentary rocks. But information from detrital minerals lacks important geological context Jack Hills, Naryer terrane, Yilgarn craton Froude et al., 1983, Nature 4.374 ± 0.006 Ga Valley et al., 2014, Nature Geosci. “Water is essential for the formation of granite and granite, in turn, is essential for the formation of continents. Earth, the only inner planet with abundant water, is the only planet with granite and continents. The Moon and the other inner planets have little or no water and no granites or continents.” Campbell & Taylor, 1983, GRL Evolution of mantle temperature Thermal history calculations by Labrosse & The decline in mantle TP from the Mesoarchean Jaupart (2007, EPSL) lead to a maximum o to the present may have been as much as 250 C, temperature (ΔT ~250oC) at 3.0 Ga and but with a spread of values similar to the present cannot be extrapolated further back in time. day (~120oC). Labrosse & Jaupart argue that ΔT was ~200oC higher than the present day at the start of mantle convection after crystallization of the last magma ocean.
    [Show full text]
  • Onset of New, Progressive Crustal Growth in the Central Slave Craton at 3.55 Ga
    © 2019 The Authors Published by the European Association of Geochemistry Onset of new, progressive crustal growth in the central Slave craton at 3.55 Ga 1* 2 1 1 3 J.R. Reimink , D.G. Pearson , S.B. Shirey , R.W. Carlson , J.W.F. Ketchum Abstract doi: 10.7185/geochemlet.1907 Ancient rock samples are limited, hindering the investigation of the processes operative on the Earth early in its history. Here we present a detailed study of well-exposed crustal remnants in the central Slave craton that formed over a 1 billion year magmatic history. The tonalitic-granodioritic gneisses analysed here are broadly comparable to common suites of rocks found in Archean cratons globally. Zircon Hf isotope data allow us to identify a major change positive εHf starting at ~3.55 Ga. The crust production processes and spatial distribution of isotopic compositions imply variable interaction with older crust, similar to the relationships seen in modern tectonic settings; specifically, long-lived plate margins. A majority of the Slave craton might have been formed by a similar mechanism. Received 1 November 2018 | Accepted 20 February 2019 | Published 28 March 2019 Introduction even farther beneath younger granitoids (Davis and Hegner, 1992; Thorpe et al., 1992; Fig. 1). Although other cratons are The growth and preservation of Earth’s continental crust is also endowed with basement gneiss complexes (e.g., Moyen an important planetary differentiation process. The Eo- to and Martin, 2012), the Slave craton is exceptional for the age Mesoarchean is an important era when crustal preservation range of exposed crust within a coherent geographic area.
    [Show full text]
  • Magmatic Zone, NE Alberta: Implications for Early Proterozic Tectonics in the Western North American Craton
    University of Alberta Geochemical and Isotopic Study of Granites From Taltson Magmatic Zone, NE Alberta: Implications For Early Proterozic Tectonics in the Western North American craton. A thesis submitted to the Facuity of Graduate Studies and Research in partial fullWlment of the requirements for the degree of Master of Science. Department of Eaah and Atmospheric Sciences Fall 1998. National Library Bibliothèque nationale 141 of,,,, du Canada Acquisitions and Acquisitions et Bibliogaphic Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON K1A ON4 ûtrawaON KIAOW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to ~ibliothequenationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/^ de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve Ia propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced &out the author's ou autrement reproduits sans son permission. autorisation. Abstract The early Proterozoic Taltson Magmatic Zone comprises the southem part of the Taltson-Thelon orogenic belt The TMZ is dominated by earlier 1-type and later S-type suites of granitoids. Previous worken ascnbed the formation of the 1-type granitoids to subduction of oceanic crust beneath the Churchill craton in an Andean setting, followed by generation of S-type granitoids during coilision between the Churchill craton and the Buffalo Head terrane.
    [Show full text]
  • Canada's Craton
    Canada’s craton: A bottoms-up view Dante Canil, School of Earth and Ocean Sciences, University (giga-annum [Ga]). Thirty-five Archean crustal provinces are of Victoria, 3800 Finnerty Road, Victoria V8W 3P6, British recognized within the cratons of continents today (Bleeker, Columbia, [email protected] 2003). The largest mass of lithosphere beneath these cratons underlies the Moho in the mantle. Thus, the long-term strength and stability of a craton must be engendered in the properties ABSTRACT of its mantle lithosphere, which may ultimately be tied to the The origin of mantle lithosphere underlying Archean crustal origins of continents themselves. provinces is most consistent with depletion at low pressures in The purpose of this review is to summarize some thermal, the spinel facies under degrees of melting higher than observed petrological, and geological constraints on the evolution of in modern ocean basins. Depleted sections of the lithosphere cratonic lithosphere as sampled by kimberlites in Canada. created in convergent margin settings were underthrust and Canada is centered over a large craton and has the larg- stacked to build a thick root with time. Geochronologic and est proportion of Archean crust in the world exposed at its geologic evidence can be interpreted to show that the final surface, making it the focus of diamond exploration in the formation and amalgamation of the bulk of the “mantle root” past 15 years. A significant portion of the Lithoprobe pro- occurs 0.5–1 b.y. later than the age of the lithosphere from gram was devoted to the geophysical imaging of lithosphere which it is comprised.
    [Show full text]
  • Reconstructing Pre-Pangean Supercontinents 1888 2013
    Reconstructing pre-Pangean supercontinents 1888 2013 CELEBRATING ADVANCES IN GEOSCIENCE † David A.D. Evans Invited Review Department of Geology & Geophysics, Yale University, New Haven, Connecticut 06520, USA ABSTRACT to routine dating by U-Pb on baddeleyite, the tive cells due to oceanic closure (Zhong et al., global abundance of Paleo-Mesoproterozoic 2007; O’Neill et al., 2009). Twenty-fi ve years ago, initial plans for dike swarms might make Nuna more immi- Some form of a supercontinent cycle is reconstructing the Rodinia supercontinent nently solvable than Rodinia. generally invoked to explain a number of were being drafted, based on the growing rec- Prior to the assembly of Nuna, various global-scale phenomena in the long-term geo- ognition of correlatable mid-Neoproterozoic “supercraton” connections such as Vaalbara, logic record. Following an initial compilation (0.8–0.7 Ga) rifted passive margins, many of Superia, and Sclavia are only beginning to of global peaks and troughs in isotopic ages which were established on the eroded rem- take form. Unmetamorphosed, early Paleo- (Gastil , 1960), early concepts of orogenic cyclic- nants of late Mesoproterozoic (1.3–1.0 Ga) proterozoic (2.5–2.0 Ga) mafi c dike swarms ity (e.g., Sutton, 1963; Wilson, 1966) planted orogenic belts. The 1990s witnessed a surge are commonplace features across the in- fertile seeds of thought regarding pre-Pangean of interest in Rodinia, with many regional teriors of Archean cratons, and their joint supercontinents. The concept of “two Phanero- studies of tectonostratigraphy and U-Pb paleo magnetic and geochronologic study can zoic supercycles” (Fischer, 1984) subsequently geochronology generally conforming to the help reassemble the cratons into their super- organized many scholars’ ideas on processes “inside-out” reconstruction model: juxtapo- craton parent landmasses.
    [Show full text]