Publication Culture in Computing Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft 3 August 2010 Jorge L
DATA SHARING, LATENCY VARIABLES AND THE SCIENCE COMMONS Draft 3 August 2010 Jorge L. Contreras* ABSTRACT Over the past decade, the rapidly decreasing cost of computer storage and the increasing prevalence of high-speed Internet connections have fundamentally altered the way in which scientific research is conducted. Led by scientists in disciplines such as genomics, the rapid sharing of data sets and cross-institutional collaboration promise to increase scientific efficiency and output dramatically. As a result, an increasing number of public “commons” of scientific data are being created: aggregations intended to be used and accessed by researchers worldwide. Yet, the sharing of scientific data presents legal, ethical and practical challenges that must be overcome before such science commons can be deployed and utilized to their greatest potential. These challenges include determining the appropriate level of intellectual property protection for data within the commons, balancing the publication priority interests of data generators and data users, ensuring a viable economic model for publishers and other intermediaries and achieving the public benefits sought by funding agencies. In this paper, I analyze scientific data sharing within the framework offered by organizational theory, expanding existing analytical approaches with a new tool termed “latency analysis.” I place latency analysis within the larger Institutional Analysis and Development (IAD) framework, as well as more recent variations of that framework. Latency analysis exploits two key variables that characterize all information commons: the rate at which information enters the commons (its knowledge latency) and the rate at which the knowledge in the commons becomes be freely utilizable (its rights latency). -
The Future of Scholarly Communication: US Efforts to Bring Warring Factions to Common Purpose in Support of Scholarship
Information Services & Use 33 (2013) 27–36 27 DOI 10.3233/ISU-130689 IOS Press The future of scholarly communication: US efforts to bring warring factions to common purpose in support of scholarship John Vaughn ∗ Association of American Universities, Washington, DC, USA Abstract. Key stakeholders in scholarly communication have been at odds over the purpose, mission and business models of publishing. This piece reviews developments in the United States but with a particular focus on efforts at reestablishing common purpose, such as (1) the Scholarly Publishing Roundtable created in June 2009 by the Chairman of Science and Technology Committee of the US House of Representatives; (2) the Task force of the Association of American Universities and Association of Research Libraries established in 2012 to focus on university presses, scholarly journals and institutional repositories; and (3) the Office of Science and Technology Policy Memorandum of February 22, 2013 on Increasing Access to the Results of Federally Funded Scientific Research. Keywords: Open Access, Public Access, scholarly publishing 1. Towards collaborative action Anyone interested in scholarly communication probably has noted the parallels in the conduct and publication of research, such as • The importance of quality, e.g. the peer review of research grant proposals and of papers submitted to publication; • The increased internationalization, e.g. scholars collaborate in international networks and journals recruit editors and reviewers globally; and • The increased volume, i.e. the rapid global expansion of research drives the growth of published outcomes. In the United States, for scholars, libraries and institutions the premise is that “dissemination of knowl- edge is as important to the university mission as its production” [4]. -
Benchmarks for IP Forwarding Tables
Reviewers James Abello Richard Cleve Vassos Hadzilacos Dimitris Achilioptas James Clippinger Jim Hafner Micah Adler Anne Condon Torben Hagerup Oswin Aichholzer Stephen Cook Armin Haken William Aiello Tom Cormen Shai Halevi Donald Aingworth Dan Dooly Eric Hansen Susanne Albers Oliver Duschka Refael Hassin Eric Allender Martin Dyer Johan Hastad Rajeev Alur Ran El-Yaniv Lisa Hellerstein Andris Ambainis David Eppstein Monika Henzinger Amihood Amir Jeff Erickson Tom Henzinger Artur Andrzejak Kousha Etessami Jeremy Horwitz Boris Aronov Will Evans Russell Impagliazzo Sanjeev Arora Guy Even Piotr Indyk Amotz Barnoy Ron Fagin Sandra Irani Yair Bartal Michalis Faloutsos Ken Jackson Julien Basch Martin Farach-Colton David Johnson Saugata Basu Uri Feige John Jozwiak Bob Beals Joan Feigenbaum Bala Kalyandasundaram Paul Beame Stefan Felsner Ming-Yang Kao Steve Bellantoni Faith Fich Haim Kaplan Micahel Ben-Or Andy Fingerhut Bruce Kapron Josh Benaloh Paul Fischer Michael Kaufmann Charles Bennett Lance Fortnow Michael Kearns Marshall Bern Steve Fortune Sanjeev Khanna Nikolaj Bjorner Alan Frieze Samir Khuller Johannes Blomer Anna Gal Joe Kilian Avrim Blum Naveen Garg Valerie King Dan Boneh Bernd Gartner Philip Klein Andrei Broder Rosario Gennaro Spyros Kontogiannis Nader Bshouty Ashish Goel Gilad Koren Adam Buchsbaum Michel Goemans Dexter Kozen Lynn Burroughs Leslie Goldberg Dina Kravets Ran Canetti Paul Goldberg S. Ravi Kumar Pei Cao Oded Goldreich Eyal Kushilevitz Moses Charikar John Gray Stephen Kwek Chandra Chekuri Dan Greene Larry Larmore Yi-Jen Chiang -
Enabling Research Through Open Access Policies
THE SCHOLARLY PUBLISHING & ACADEMIC RESOURCES COALITION 21 Dupont Circle NW, Suite 800 Washington, DC 20036 (202) 296-2296 www.arl.org/sparc Enabling Research through Open Access Policies Heather Joseph, Executive Director SPARC Washington, DC USA The Issue • Funders invest in research with the expectation that it will result in improvements to the public good. • They increasingly recognize that dissemination is an essential component of the research process. • Research is cumulative - it advances through sharing results. The value of an investment in research is maximized only through use of its findings. www.arl.org/sparc 2 The Issue • Too often, the research results (either publicly or privately funded ) are simply not widely available to the community of potential users. • Internet provides new opportunity to bring information broader audience at virtually no marginal cost, and use it new, innovative ways. Result: Call for new framework designed to allow research results to be more easily accessed and used. www.arl.org/sparc 3 Without Open Access But Article Isn’t Available….. Usability is Key “By open access, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search or link to the full text of these articles, crawl them for indexing, pass them as data to software or use them for any other lawful purpose…” - The Budapest Open Access Initiative www.arl.org/sparc 6 Greater Access is a Policy Concern “Governments would boost innovation and get a better return on their investment in publicly funded research by making research findings more widely available…. -
Open Access Publishing
Open Access The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Suber, Peter. 2012. Open access. Cambridge, Mass: MIT Press. [Updates and Supplements: http://cyber.law.harvard.edu/hoap/ Open_Access_(the_book)] Published Version http://mitpress.mit.edu/books/open-access Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10752204 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA OPEN ACCESS The MIT Press Essential Knowledge Series Information and the Modern Corporation, James Cortada Intellectual Property Strategy, John Palfrey Open Access, Peter Suber OPEN ACCESS PETER SUBER TheMIT Press | Cambridge, Massachusetts | London, England © 2012 Massachusetts Institute of Technology This work is licensed under the Creative Commons licenses noted below. To view a copy of these licenses, visit creativecommons.org. Other than as provided by these licenses, no part of this book may be reproduced, transmitted, or displayed by any electronic or mechanical means without permission from the publisher or as permitted by law. This book incorporates certain materials previously published under a CC-BY license and copyright in those underlying materials is owned by SPARC. Those materials remain under the CC-BY license. Effective June 15, 2013, this book will be subject to a CC-BY-NC license. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. -
Increasing Public and Fair Access to Scientific Findings
Increasing Public and Fair Access to Scientific Findings Siyuan (Grace) Zhou University of Missouri-Columbia Abstract Public and fair access to scientific findings is an increasingly important movement for scientists, researchers, and knowledge workers who can put the findings to good use and build upon the scholarly research to innovate. Choosing the location of the digital repository to house the research articles is an essential part of developing an open access policy for federal agencies. Where the journal articles would reside has been a controversial issue between publishers and Open Access advocates. This poster presents the background of the FASTR Act and the analysis of the scientific data sharing issues among the U.S. government agencies and academic publishers. It also proposes and demonstrates a centralized government-funded repository leading to a faster and wider sharing of scientific research, which enables the continued advance of science, stimulates innovation stimulation, and grows the overall economy. Keywords: FASTR; Open Access; Open Policy; Data Sharing doi: 10.9776/16456 Copyright: Copyright is held by the authors. Contact: [email protected] Introduction Public and fair access to scientific findings is an increasingly important movement for scientists, researchers, and knowledge workers who can put the findings to good use and build upon the scholarly research to innovate. To increase access to the results of federally funded scientific research, the U.S. legislation has been committed to proposition that taxpayers deserve easy access to the results of scientific findings their text dollars have paid for. John Cornyn, the senator for Texas, and Ron Wyden for Oregon introduced the Fair Access to Science and Technology Research Act (FASTR) in February 2013. -
Arxiv:2008.08417V2 [Cs.DS] 3 Nov 2020
Modular Subset Sum, Dynamic Strings, and Zero-Sum Sets Jean Cardinal∗ John Iacono† Abstract a number of operations on a persistent collection strings, e modular subset sum problem consists of deciding, given notably, split and concatenate, as well as nding the longest a modulus m, a multiset S of n integers in 0::m − 1, and common prex (LCP) of two strings, all in at most loga- a target integer t, whether there exists a subset of S with rithmic time with updates being with high probability. We elements summing to t (mod m), and to report such a inform the reader of the independent work of Axiotis et + set if it exists. We give a simple O(m log m)-time with al., [ABB 20], contains much of the same results and ideas high probability (w.h.p.) algorithm for the modular sub- for modular subset sum as here has been accepted to ap- set sum problem. is builds on and improves on a pre- pear along with this paper in the proceedings of the SIAM vious O(m log7 m) w.h.p. algorithm from Axiotis, Backurs, Symposium on Simplicity in Algorithms (SOSA21). + Jin, Tzamos, and Wu (SODA 19). Our method utilizes the As the dynamic string data structure of [GKK 18] is ADT of the dynamic strings structure of Gawrychowski quite complex, we provide in §4 a new and far simpler alter- et al. (SODA 18). However, as this structure is rather com- native, which we call the Data Dependent Tree (DDT) struc- plicated we present a much simpler alternative which we ture. -
The Best Nurturers in Computer Science Research
The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities. -
Kurt Mehlhorn, and Monique Teillaud
Volume 1, Issue 3, March 2011 Reasoning about Interaction: From Game Theory to Logic and Back (Dagstuhl Seminar 11101) Jürgen Dix, Wojtek Jamroga, and Dov Samet .................................... 1 Computational Geometry (Dagstuhl Seminar 11111) Pankaj Kumar Agarwal, Kurt Mehlhorn, and Monique Teillaud . 19 Computational Complexity of Discrete Problems (Dagstuhl Seminar 11121) Martin Grohe, Michal Koucký, Rüdiger Reischuk, and Dieter van Melkebeek . 42 Exploration and Curiosity in Robot Learning and Inference (Dagstuhl Seminar 11131) Jeremy L. Wyatt, Peter Dayan, Ales Leonardis, and Jan Peters . 67 DagstuhlReports,Vol.1,Issue3 ISSN2192-5283 ISSN 2192-5283 Published online and open access by Aims and Scope Schloss Dagstuhl – Leibniz-Zentrum für Informatik The periodical Dagstuhl Reports documents the GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, program and the results of Dagstuhl Seminars and Germany. Dagstuhl Perspectives Workshops. Online available at http://www.dagstuhl.de/dagrep In principal, for each Dagstuhl Seminar or Dagstuhl Perspectives Workshop a report is published that Publication date contains the following: August, 2011 an executive summary of the seminar program and the fundamental results, Bibliographic information published by the Deutsche an overview of the talks given during the seminar Nationalbibliothek (summarized as talk abstracts), and The Deutsche Nationalbibliothek lists this publica- summaries from working groups (if applicable). tion in the Deutsche Nationalbibliografie; detailed This basic framework can be extended by suitable bibliographic data are available in the Internet at contributions that are related to the program of the http://dnb.d-nb.de. seminar, e.g. summaries from panel discussions or open problem sessions. License This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license: CC-BY-NC-ND. -
Strategische Und Operative Handlungsoptionen Für Wissenschaftliche Einrichtungen Zur Gestaltung Der Open-Access-Transformation
! ! ! !"#$"%&'()*%+,-.+/0%#$"'1%+2$-.3,-&(/0"'/-%-+ 45#+6'((%-()*$4"3')*%+7'-#')*",-&%-+8,#+ 9%("$3",-&+.%#+:0%-;<))%((;=#$-(4/#>$"'/-+ ! "#$$%&'('#)*! "#$!%$&'()#()!*+,!'-'*+./,01+(!2$'*+,! ")+')&!,-#.)$),-#(%! /"&0!,-#.01! ! +/()+$+/013! '(!*+$!41/&5,561/,01+(!7'-#&383! *+$!9#.:5&*3;<(/=+$,/383!"#!>+$&/(! ! =5(!9+/("!4'.6+&! ! ! ?/+!4$8,/*+(3/(!*+$!9#.:5&*3;<(/=+$,/383!"#!>+$&/(@!! 4$5AB!?$B;C()B!?$B!D':/(+!E#(,3! ! ?/+!?+-'(/(!*+$!41/&5,561/,01+(!7'-#&383@! 4$5AB!?$B!2':$/+&+!F+3"&+$! ! ! 2#3'013+$! %$,3)#3'013+$@!! ! 4$5AB!?$B!4+3+$!D01/$.:'01+$! GH+/3)#3'013+$@!! 4$5AB!?$B!I5&A$'.!95$,3.'((! ! ?'3#.!*+$!?/,6#3'3/5(@!JKB!F'/!LMLJ! !"#$%&'()*+),-#",'. G#,'..+(A',,#()!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!NC! O:,3$'03!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!NCC! ?'(-,')#()!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!NCCC! O:-P$"#(),=+$"+/01(/,!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!CQ! R':+&&+(=+$"+/01(/,!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!QCC! O::/&*#(),=+$"+/01(/,!BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB!QCCC! -
Das Zeitschriftenmanagement Wissenschaftlicher Bibliotheken Und Die Implikation Der Open-Access-Initiative
DAS ZEITSCHRIFTENMANAGEMENT WISSENSCHAFTLICHER BIBLIOTHEKEN UND DIE IMPLIKATION DER OPEN-ACCESS-INITIATIVE Dissertation zur Erlangung des akademischen Grades Doctor philosophiae (Dr. phil.) eingereicht an der Philosophischen Fakultät der Humboldt-Universität zu Berlin von Miriam Judith Albers geb. Lorenz Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr.-Ing. Dr. Sabine Kunst Dekanin: Prof. Dr. Gabriele Metzler Gutachter/in: 1. Prof. Dr. Peter Schirmbacher 2. Prof. Dr. Simone Fühles-Ubach Datum der Einreichung: 18.07.2017 Datum der Disputation:17.10.2017 I Inhalt Zusammenfassung .................................................................................................................. IV Abstract .................................................................................................................................... V Danksagung ............................................................................................................................. VI Abkürzungsverzeichnis ........................................................................................................ VII Tabellenverzeichnis ................................................................................................................. X Abbildungsverzeichnis ........................................................................................................... XI 1 Einleitung ............................................................................................................................. 1 2 Merkmale des Zeitschriftenmanagements -
CS Cornell 40Th Anniversary Booklet
Contents Welcome from the CS Chair .................................................................................3 Symposium program .............................................................................................4 Meet the speakers ..................................................................................................5 The Cornell environment The Cornell CS ambience ..............................................................................6 Faculty of Computing and Information Science ............................................8 Information Science Program ........................................................................9 College of Engineering ................................................................................10 College of Arts & Sciences ..........................................................................11 Selected articles Mission-critical distributed systems ............................................................ 12 Language-based security ............................................................................. 14 A grand challenge in computer networking .................................................16 Data mining, today and tomorrow ...............................................................18 Grid computing and Web services ...............................................................20 The science of networks .............................................................................. 22 Search engines that learn from experience ..................................................24