CD70-Restricted Specific Activation of TRAILR1 Or
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology
Cell, Vol. 104, 487±501, February 23, 2001, Copyright 2001 by Cell Press The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology Richard M. Locksley,*²³k Nigel Killeen,²k The receptors and ligands in this superfamily have and Michael J. Lenardo§k unique structural attributes that couple them directly to *Department of Medicine signaling pathways for cell proliferation, survival, and ² Department of Microbiology and Immunology differentiation. Thus, they have assumed prominent ³ Howard Hughes Medical Institute roles in the generation of tissues and transient microen- University of California, San Francisco vironments. Most TNF/TNFR SFPs are expressed in the San Francisco, California 94143 immune system, where their rapid and potent signaling § Laboratory of Immunology capabilities are crucial in coordinating the proliferation National Institute of Allergy and Infectious Diseases and protective functions of pathogen-reactive cells. National Institutes of Health Here, we review the organization of the TNF/TNFR SF Bethesda, Maryland 20892 and how these proteins have been adapted for pro- cesses as seemingly disparate as host defense and or- ganogenesis. In interpreting this large and highly active Introduction area of research, we have focused on common themes that unite the actions of these genes in different tissues. Three decades ago, lymphotoxin (LT) and tumor necro- We also discuss the evolutionary success of this super- sis factor (TNF) were identified as products of lympho- familyÐsuccess that we infer from its expansion across cytes and macrophages that caused the lysis of certain the mammalian genome and from its many indispens- types of cells, especially tumor cells (Granger et al., able roles in mammalian biology. -
A Fratricide-Resistant Allogeneic CAR T
Investigation of ALLO-316: A Fratricide- Resistant Allogeneic CAR T Targeting CD70 As a Potential Therapy for the Treatment of AML Surabhi Srinivasan, Nguyen Tan, Hsin-Yuan Cheng, Yi Zhang, Silvia Tacheva-Grigorova, Tom Van Blarcom, Cesar Sommer, Duy Nguyen , Barbra Sasu, and Siler Panowski 1 Disclosures • Full-time employee of Allogene Therapeutics • Equity interest in Allogene Therapeutics ALLO-316 (CD70) utilizes TALEN® gene-editing technology pioneered and owned by Cellectis. Allogene has an exclusive license to the Cellectis technology for allogeneic products directed at this target and holds all global development and commercial rights for this investigational candidate. 22 CONFIDENTIAL Disclaimers This presentation is not intended for product promotion. All information is related to investigational therapies not available for commercial use. The safety and efficacy of the therapies have not been established for FDA approval. Forward-Looking Statements To the extent statements contained in this Presentation are not descriptions of historical facts regarding Allogene Therapeutics, Inc. (“Allogene,” “we,” “us,” or “our”), they are forward-looking statements reflecting management’s current beliefs and expectations. Forward-looking statements are subject to known and unknown risks, uncertainties, and other factors that may cause our or our industry’s actual results, levels or activity, performance, or achievements to be materially different from those anticipated by such statements. You can identify forward-looking statements by words such as “anticipate,” “believe,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “will,” “would” or the negative of those terms, and similar expressions that convey uncertainty of future events or outcomes. Forward-looking statements contained in this Presentation include, but are not limited to, statements regarding: the ability to progress the clinical development of allogeneic CAR T (AlloCAR T™) therapies and the potential benefits of AlloCAR T™ therapy, including ALLO-316. -
Activating Death Receptor DR5 As a Therapeutic Strategy for Rhabdomyosarcoma
International Scholarly Research Network ISRN Oncology Volume 2012, Article ID 395952, 10 pages doi:10.5402/2012/395952 Review Article Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma Zhigang Kang,1, 2 Shi-Yong Sun,3 and Liang Cao1 1 Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2 Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., NCI Frederick, Frederick, MD 21702, USA 3 Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Correspondence should be addressed to Liang Cao, [email protected] Received 4 January 2012; Accepted 24 January 2012 Academic Editors: E. Boven and S. Mandruzzato Copyright © 2012 Zhigang Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin. RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. -
Ligand–Receptor Binding Revealed by the TNF Family Member TALL-1
articles Ligand–receptor binding revealed by the TNF family member TALL-1 Yingfang Liu*†, Xia Hong*†, John Kappler*‡§, Ling Jiang*, Rongguang Zhangk, Liangguo Xu*, Cheol-Ho Pan*, Wesley E. Martin*, Robert C. Murphy*, Hong-Bing Shu*{, Shaodong Dai*‡ & Gongyi Zhang*§ * Integrated Department of Immunology, National Jewish Medical and Research Center, ‡ Howard Hughes Medical Institute, and § Department of Pharmacology, Biomolecular Structure Program, School of Medicine, University of Colorado Health Science Center, 1400 Jackson Street, Denver, Colorado 80206, USA { Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China k Structural Biology Section, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA † These authors contributed equally to this work ........................................................................................................................................................................................................................... The tumour necrosis factor (TNF) ligand TALL-1 and its cognate receptors, BCMA, TACI and BAFF-R, were recently identified as members of the TNF superfamily, which are essential factors contributing to B-cell maturation. The functional, soluble fragment of TALL-1 (sTALL-1) forms a virus-like assembly for its proper function. Here we determine the crystal structures of sTALL-1 complexed with the extracellular domains of BCMA and BAFF-R at 2.6 and 2.5 A˚ , respectively. The single cysteine-rich domain -
(CS-ⅣA-Be), a Novel IL-6R Antagonist, Inhibits IL-6/STAT3
Author Manuscript Published OnlineFirst on February 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0551 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Chikusetsusaponin Ⅳa butyl ester (CS-Ⅳa-Be), a novel IL-6R antagonist, inhibits IL-6/STAT3 signaling pathway and induces cancer cell apoptosis Jie Yang 1, 2, Shihui Qian 2, Xueting Cai 1, 2, Wuguang Lu 1, 2, Chunping Hu 1, 2, * Xiaoyan Sun1, 2, Yang Yang1, 2, Qiang Yu 3, S. Paul Gao 4, Peng Cao 1, 2 1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China 2. Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China 3. Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201203, China 4. Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA Running title: CS-Ⅳa-Be, a novel IL-6R antagonist, inhibits IL-6/STAT3 Keywords: Chikusetsusaponin Ⅳ a butyl ester (CS- Ⅳ a-Be), STAT3, IL-6R, antagonist, cancer Grant support: P. Cao received Jiangsu Province Funds for Distinguished Young Scientists (BK20140049) grant, J. Yang received National Natural Science Foundation of China (No. 81403151) grant, and X.Y. Sun received National Natural Science Foundation of China (No. 81202576) grant. Corresponding author: Peng Cao Institute: Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China Mailing address: 100#, Shizi Street, Hongshan Road, Nanjing, Jiangsu, China Tel: +86-25-85608666 Fax: +86-25-85608666 Email address: [email protected] The first co-authors: Jie Yang and Shihui Qian The authors disclose no potential conflicts of interest. -
BCMA-Targeted Immunotherapy for Multiple Myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2*
Yu et al. Journal of Hematology & Oncology (2020) 13:125 https://doi.org/10.1186/s13045-020-00962-7 REVIEW Open Access BCMA-targeted immunotherapy for multiple myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2* Abstract B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development. Keywords: B cell maturation antigen, BCMA, Belantamab mafodotin, CAR-T, Antibody-drug conjugate, Bispecific T cell engager Introduction B cell maturation antigen (BCMA) Recent advances in novel therapeutics such as prote- BCMA is encoded by a 2.92-kb TNFRSF17 gene located asome inhibitors (PI) and immunomodulatory drugs on the short arm of chromosome 16 (16p13.13) and (IMiD) have significantly improved the treatment out- composed of 3 exons separated by 2 introns (Fig. 1). comes in patients with multiple myeloma (MM) [1–8]. BCMA is a 184 amino acid and 20.2-kDa type III trans- However, most MM patients eventually relapse due to membrane glycoprotein, with the extracellular N the development of drug resistance [9]. In addition, terminus containing a conserved motif of 6 cysteines many of the current popular target antigens, such as [18–21]. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) Balancing effector lymphocyte formation via CD27-CD70 interactions Arens, R. Publication date 2003 Link to publication Citation for published version (APA): Arens, R. (2003). Balancing effector lymphocyte formation via CD27-CD70 interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens*, Kiki Tesselaar*, Paul A. Baars, Gijs M.W. van Schijndel, Jenny Hendriks, Steven T. Pals, Paul Krimpenfort, Jannie Borst, Marinus H.J. van Oers, and René A.W. van Lier 'These authors contributed equally to this work Immunity 15, 801-812 (2001) Chapter 3 Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNy-mediated B cell depletion Ramon Arens123#, Kiki Tesselaar23", Paul A. -
TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. -
Proteomic Bioprofiles and Mechanistic Pathways of Progression to Heart Failure: the HOMAGE Study
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Ferreira, J. P. et al. (2019) Proteomic bioprofiles and mechanistic pathways of progression to heart failure: the HOMAGE study. Circulation, 12(5), e005897. (doi:10.1161/CIRCHEARTFAILURE.118.005897) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/186516/ Deposited on: 13 May 2019 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Proteomic Bioprofiles and Mechanistic Pathways of Progression to Heart Failure: the HOMAGE (Heart OMics in AGEing) study João Pedro Ferreira, MD, PhD1,2* & Job Verdonschot, MD3,4*; Timothy Collier, PhD5; Ping Wang, PhD4; Anne Pizard, PhD1,6; Christian Bär, MD, PhD7; Jens Björkman, PhD8; Alessandro Boccanelli, MD9; Javed Butler, MD, PhD10; Andrew Clark, MD, PhD11; John G. Cleland, MD, PhD12,13; Christian Delles, MD, PhD14; Javier Diez, MD, PhD15,16,17,18; Nicolas Girerd, MD, PhD1; Arantxa González, MD, PhD15,16,17; Mark Hazebroek, MD, PhD3; Anne-Cécile Huby, PhD1; Wouter Jukema, MD, PhD19; Roberto Latini, MD, PhD20; Joost Leenders, MD, PhD21; Daniel Levy, MD, PhD22,23; Alexandre Mebazaa, MD, PhD24; Harald Mischak, MD, PhD25; Florence Pinet, MD, PhD26; Patrick Rossignol, MD, PhD1; Naveed Sattar, MD, PhD27; Peter Sever, MD, PhD28; Jan A. Staessen, MD, PhD29,30; Thomas Thum, MD, PhD7,31; Nicolas Vodovar, PhD24; Zhen-Yu Zhang, MD29; Stephane Heymans, MD, PhD3,32,33** & Faiez Zannad, MD, PhD1** *co-first authors **co-last authors 1 Université de Lorraine, Inserm, Centre d’Investigations Cliniques- Plurithématique 14-33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France. -
Co-Expression of CD40L with CD70 Or OX40L Increases B-Cell Viability and Antitumor Efficacy
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 29 Research Paper Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy Chang-Ae Shin1, Hyun-Woo Cho1, A-Ri Shin2,3, Hyun-Jung Sohn2, Hyun-Il Cho2,3, Tai-Gyu Kim1,2,3 1Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 2Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea 3Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea Correspondence to: Hyun-Il Cho, email: [email protected] Tai-Gyu Kim, email: [email protected] Keywords: cancer vaccine, B-cells, costimulatory ligand, anti-apoptosis, tumor immunity Received: February 24, 2016 Accepted: May 29, 2016 Published: June 15, 2016 ABSTRACT Activated B-cells are a promising alternative source of antigen-presenting cells. They can generally be obtained in sufficient numbers for clinical use, but in most instances produce weak immune responses and therapeutic effects that are suboptimal for use in therapeutic cancer vaccines. To improve the immunogenic potency and therapeutic efficacy of B-cell-based vaccines, ex vivo-activated B-cells were transduced with recombinant lentiviruses in order to express additional costimulatory ligands—CD40L, CD70, OX40L, or 4-1BBL—either individually or in pairs (CD70/CD40L, OX40L/CD40L, or 4-1BBL/CD40L). We observed that the expression of CD40L molecules on B-cells was crucial for T-cell priming and activation. Administration of B-cells co-expressing CD40L with the other costimulatory ligands provided substantial antigen-specific CD8 T-cell responses capable of provoking in vivo proliferation and potent cytolytic activities. -
On the TRAIL of Better Therapies: Understanding TNFRSF Structure-Function
Review On the TRAIL of Better Therapies: Understanding TNFRSF Structure-Function Éva S. Vanamee and Denise L. Faustman * Immunobiology Laboratories, Massachusetts General Hospital, 13th Street, Building 149, Rm. 3602, Boston, MA 02129, USA; [email protected] * Correspondence: [email protected]; Tel: +1-617-726-4084 Received:02 February 2020; Accepted: 17 March 2020; Published: 20 March 2020 Abstract: Tumor necrosis factor (TNF) superfamily ligands show diverse biological functions, such as the induction of apoptotic cell death or cell survival and proliferation, making them excellent therapeutic targets for cancer and autoimmunity. We review the latest literature on TNF receptor superfamily signaling with a focus on structure-function. Using combinatorics, we argue that receptors that cluster on the cell surface and are activated by membrane-bound ligands need to arrange in a highly ordered manner, as the probability of random ligand and receptor arrangements matching up for receptor activation is very low. A growing body of evidence indicates that antiparallel receptor dimers that sequester the ligand binding site cluster on the cell surface, forming a hexagonal lattice. Upon ligand binding, this arrangement puts the activated receptors at the right distance to accommodate the downstream signaling partners. The data also suggest that the same geometry is utilized regardless of receptor type. The unified model provides important clues about TNF receptor signaling and should aid the design of better therapies for cancer and various immune mediated diseases. Keywords: TRAIL; TRAIL receptors; apoptosis; TNFSF signaling; receptor clustering; antiparallel dimer; hexagonal lattice; cancer 1. Introduction The TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) [1] is a member of the TNF superfamily (TNFSF). -
Snapshot: Cytokines III Cristina M
SnapShot: Cytokines III Cristina M. Tato and Daniel J. Cua Schering-Plough Biopharma (Formerly DNAX Research), Palo Alto, CA 94304, USA Cytokine Receptor Source Targets Major Function Disease Association TNFα Murine: Macrophages, Neutrophils, Inflammatory; ↓ = disregulated fever; increased TNFR,p55; TNFR,p75 monocytes, T cells, macrophages, promotes activation susceptibility to bacterial infection; others monocytes, and production of enhanced resistance to LPS-induced septic Human: endothelial cells acute-phase proteins shock TNFR,p60; TNFR,p80 ↑ = exacerbation of arthritis and colitis LTα Murine: T cells, B cells Many cell types Promotes activation ↓ = defective response to bacterial TNFR,p55; TNFR,p75 and cytotoxicity; pathogens; absence of peripheral lymph development of lymph nodes and Peyer’s patches Human: nodes and Peyer’s TNFR,p60; TNFR,p80 patches LTβ LTβR T cells, B cells Myeloid cells, other Peripheral lymph ↓ = increased susceptibility to bacterial cell types node development; infection; absence of lymph nodes and proinflammatory Peyer’s patches ↑ = ectopic lymph node formation LIGHTa LTβR, DcR3, HVEM Activated T cells, B cells, NK cells, Costimulatory; ↓ = defective CD8 T cell costimulation monocytes, DCs DCs, other tissue promotes CTL activity TWEAK Fn14 Monocytes, Tissue progenitors, Proinflammatory; macrophages, epithelial, promotes cell growth endothelial endothelial for tissue repair and remodeling APRIL TACI, BAFF-R, BCMA Macrophages, DCs B cell subsets Promotes T cell- ↓ = impaired class switching to IgA independent