Development and Validation of a Highly Sensitive LC-MS/MS Method for the Analysis of Bile Acids in Serum, Plasma, and Liver Tissue Samples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review: Microbial Transformations of Human Bile Acids Douglas V
Guzior and Quinn Microbiome (2021) 9:140 https://doi.org/10.1186/s40168-021-01101-1 REVIEW Open Access Review: microbial transformations of human bile acids Douglas V. Guzior1,2 and Robert A. Quinn2* Abstract Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of “microbially conjugated bile acids.” This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Keywords: Bile acid, Cholic acid, Conjugation, Microbiome, Metabolism, Microbiology, Gut health, Clostridium scindens, Enterocloster bolteae Introduction the development of healthy or diseased states. For The history of bile example, abnormally high levels of the microbially modi- Bile has been implicated in human health for millennia. -
Abstract Mahapatra, Debabrata
ABSTRACT MAHAPATRA, DEBABRATA. Vitamin D Receptor and Xenobiotic Interactions: Insights into the diversity and complexity of molecular interactions and their outcomes (Under the direction of Seth W. Kullman). The etiology of a significant number of human diseases including hypertension, cardiovascular disease, diabetes, obesity and cancer are in part associated with exposures to environmental contaminants. Recent trends in toxicological research indicate a growing interest in chemicals capable of disrupting the endocrine system. These chemicals comprise a range of natural and synthetic molecules that interact with nuclear hormone receptors altering signaling pathways regulating adverse effects in multiple organ systems, tissue and cell types. While the interaction of endocrine disrupting xenobiotics with nuclear receptors such as the Estrogen receptor (ER), Thyroid receptor (TR), Glucocorticoid receptor (GR) and Androgen receptor (AR) has been studied in detail, similar research involving xenobiotic interactions with the Vitamin D receptor (VDR) has remained underexplored. This dissertation examines the role of vitamin d receptor as a potential target of xenobiotic induced endocrine disruption and provides new insights into the possible mechanisms underlying the complex molecular interactions between VDR and select VDR agonists and antagonists. Chapter 1 tests the usefulness and importance of orthogonal assays for validation and confirmation of activity profiles of chemicals generated by the qHTS (Quantitative Highthroughput Testing) -
The Analysis of Bile Acids: Enhancement of Specificity Using an Ion Mobility-Tofms Based Approach
THE ANALYSIS OF BILE ACIDS: ENHANCEMENT OF SPECIFICITY USING AN ION MOBILITY-TOFMS BASED APPROACH Jonathan P Williams1, Martin Palmer1, Jonas Abdel-Khalik2, Yuqin Wang2, Sarah M Stow3, Mark Towers1, Giuseppe Astarita1, James Langridge1 and William J Griffiths2 1 2 3 Waters Corporation, Wilmslow, Manchester UK; College of Medicine, Swansea University UK; Laboratory for Structural Mass Spectrometry, Vanderbilt University, TN, USA Fig.1 shows a schematic of Vion. In brief, the instrument com- MALDI Imaging Ion Mobility MS measurements of the 100 Representative conformations from distance geometry INTRODUCTION prises an IM separation device, a quadrupole and segmented RESULTS isomeric bile acids deoxycholic acid and hyodeoxy-cholic modeling for the bile acids investigated collision cell prior to the TOFMS. Ions are accumulated in the acid DCA 'Steroidomics' is the qualitative and quantitative trap travelling-wave (T-Wave) and periodically released into New and improved methods were sought for the identification, HA quantification, and characterization of bile acids, oxysterols, and other the T-Wave IM where they separate according to their mobil- % study of steroid-type molecules found within the sterols and steroids. The involvement of these molecules in metabolome. Bile acids for example, are ity. neurogenesis and immunity is investigated. classified as acidic sterols that are synthesised The use of IM as an analytical tool to aid direct infusion ESI, DESI and mainly by the liver from cholesterol and aid MALDI shotgun steroidomic-type analysis was investigated. Bile acids 0 digestion and fat solubilisation. The presence of present themselves in biological type samples as complex mixtures. 2.00 2.50 3.00 3.50 4.00 4.50 5.00 multiple isomeric bile acids poses a great Structural information may be obtained using MS/MS but in the absence of a chromatographic step, unambiguous characterisation using MS/MS 100 challenge for steroidomic research. -
Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis
International Journal of Molecular Sciences Review Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis Niklas Grüner 1 and Jochen Mattner 1,2,* 1 Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; [email protected] 2 Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany * Correspondence: [email protected]; Tel.: +49-9131-852-3640 Abstract: After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are trans- ported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkin- son’s disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few Citation: Grüner, N.; Mattner, J. -
Eldecalcitol Is More Effective for Promoting Osteogenesis Than Alfacalcidol in Cyp27b1-Knockout Mice
bioRxiv preprint doi: https://doi.org/10.1101/349837; this version posted June 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Eldecalcitol is more effective for promoting osteogenesis than alfacalcidol in Cyp27b1-knockout Mice Short title: Osteogenic effect of eldecalcitol Yoshihisa Hirota1,2*¶, Kimie Nakagawa2¶, Keigo Isomoto2¶, Toshiyuki Sakaki3, Noboru Kubodera4, Maya Kamao2, Naomi Osakabe5, Yoshitomo Suhara6, Toshio Okano2* 1 Laboratory of Biochemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan 2 Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan 3 Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Imizu, Toyama 939-0398, Japan 4 International Institute of Active Vitamin D Analogs, 35-6, Sankeidai, Mishima, Shizuoka 411-0017, Japan 5 Food and Nutrition Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan 6 Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan ¶ These authors contributed equally to this work. * Corresponding authors: Yoshihisa Hirota Tel.: +81-48-7201-6037; Fax: +81-48-7201-6011; E-mail: hirotay@ shibaura-it.ac.jp Toshio Okano Tel.: (81) 78-441-7524; Fax: (81) 78-441-7524; E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/349837; this version posted June 18, 2018. -
Applications of Chemical Methodology in Environmental Science, Systems Biology, and Interdisciplinary Chemical Education
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Applications of Chemical Methodology in Environmental Science, Systems Biology, and Interdisciplinary Chemical Education Caleb Michael Gibson University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Gibson, Caleb Michael, "Applications of Chemical Methodology in Environmental Science, Systems Biology, and Interdisciplinary Chemical Education. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5400 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Caleb Michael Gibson entitled "Applications of Chemical Methodology in Environmental Science, Systems Biology, and Interdisciplinary Chemical Education." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Shawn Campagna, Major Professor We have read this dissertation and recommend its acceptance: Elizabeth Fozo, MIchael Sepaniak, Ampofo Darko Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) APPLICATIONS OF CHEMICAL METHODOLOGY IN ENVIRONMENTAL SCIENCE, SYSTEMS BIOLOGY, AND INTERDISCIPLINARY CHEMICAL EDUCATION A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Caleb Michael Gibson May 2019 Copyright © 2019 by Caleb Michael Gibson All rights reserved. -
Is Calcifediol Better Than Cholecalciferol for Vitamin D Supplementation?
Osteoporosis International (2018) 29:1697–1711 https://doi.org/10.1007/s00198-018-4520-y REVIEW Is calcifediol better than cholecalciferol for vitamin D supplementation? J. M. Quesada-Gomez1,2 & R. Bouillon3 Received: 22 February 2018 /Accepted: 28 March 2018 /Published online: 30 April 2018 # International Osteoporosis Foundation and National Osteoporosis Foundation 2018 Abstract Modest and even severe vitamin D deficiency is widely prevalent around the world. There is consensus that a good vitamin D status is necessary for bone and general health. Similarly, a better vitamin D status is essential for optimal efficacy of antiresorptive treatments. Supplementation of food with vitamin D or using vitamin D supplements is the most widely used strategy to improve the vitamin status. Cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2)arethemostwidelyused compounds and the relative use of both products depends on historical or practical reasons. Oral intake of calcifediol (25OHD3) rather than vitamin D itself should also be considered for oral supplementation. We reviewed all publications dealing with a comparison of oral cholecalciferol with oral calcifediol as to define the relative efficacy of both compounds for improving the vitamin D status. First, oral calcifediol results in a more rapid increase in serum 25OHD compared to oral cholecalciferol. Second, oral calcifediol is more potent than cholecalciferol, so that lower dosages are needed. Based on the results of nine RCTs comparing physiologic doses of oral cholecalciferol with oral calcifediol, calcifediol was 3.2-fold more potent than oral chole- calciferol. Indeed, when using dosages ≤ 25 μg/day, serum 25OHD increased by 1.5 ± 0.9 nmol/l for each 1 μgcholecalciferol, whereas this was 4.8 ± 1.2 nmol/l for oral calcifediol. -
Vitamin D and Cancer
WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER Vitamin D and Cancer IARC 2008 WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC Working Group Reports Volume 5 Vitamin D and Cancer - i - Vitamin D and Cancer Published by the International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France © International Agency for Research on Cancer, 2008-11-24 Distributed by WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]) Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturer’s products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The authors alone are responsible for the views expressed in this publication. The International Agency for Research on Cancer welcomes requests for permission to reproduce or translate its publications, in part or in full. -
Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum
International Journal of Molecular Sciences Communication Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum Michiyasu Ishizawa, Daisuke Akagi and Makoto Makishima * ID Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; [email protected] (M.I.); [email protected] (D.A.) * Correspondence: [email protected]; Tel.: +81-3-3972-8111 Received: 26 May 2018; Accepted: 3 July 2018; Published: 6 July 2018 Abstract: The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria, acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1 expression effectively in the duodenum and jejunum, the LCA increased target gene expression in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA administration was not effective in the VDR target gene induction in the kidney. -
A Microbial Metabolite, Lithocholic Acid, Suppresses IFN-Γ and Ahr
bioRxiv preprint doi: https://doi.org/10.1101/491241; this version posted December 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A microbial metabolite, Lithocholic acid, suppresses IFN-g and AhR expression by human cord blood CD4 T cells Anya Nikolai* and Makio Iwashima* *Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153 Corresponding author: Makio Iwashima, Ph.D. Department of Microbiology and Immunology Stritch School of Medicine Loyola University Medical Center Building 115, Rm 270A 2160 S. First Avenue Maywood, IL 60153 Email: [email protected] Phone: 708-216-5816 Fax: 708-216-9574 Declarations of interest: none Highlights • Lithocholic acid suppresses IFNγ production by CD4 T cells. • Lithocholic acid suppresses STAT1 and IRF1 expression by activated CD4 T cells. • Lithocholic acid suppresses AhR in a comparable manner to calcitriol. bioRxiv preprint doi: https://doi.org/10.1101/491241; this version posted December 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Vitamin D is a well-known micronutrient that modulates immune responses by epigenetic and transcriptional regulation of target genes, such as inflammatory cytokines. Our group recently demonstrated that the most active form of vitamin D, calcitriol, reduces expression of a transcription factor known as the aryl hydrocarbon receptor (AhR) and inhibits differentiation of a pro-inflammatory T cell subset, Th9. Lithocholic acid (LCA), a secondary bile acid produced by commensal bacteria, is known to bind to and activate the vitamin D receptor (VDR) in a manner comparable to calcitriol. -
Peroxisome Proliferator-Activated Receptor Induces Hepatic
THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 278, No. 35, Issue of August 29, pp. 32852–32860, 2003 © 2003 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Peroxisome Proliferator-activated Receptor ␣ Induces Hepatic Expression of the Human Bile Acid Glucuronidating UDP-glucuronosyltransferase 2B4 Enzyme* Received for publication, May 22, 2003 Published, JBC Papers in Press, June 16, 2003, DOI 10.1074/jbc.M305361200 Olivier Barbier‡, Daniel Duran-Sandoval‡, Ine´s Pineda-Torra‡, Vladimir Kosykh§, Jean-Charles Fruchart‡, and Bart Staels‡¶ From the ‡Unite´de Recherche 545, Institut National de la Sante´et de la Recherche Me´dicale (INSERM), De´partement d’Athe´roscle´rose, Institut Pasteur de Lille and the Faculte´de Pharmacie, Universite´de Lille II, 59019 Lille, France and §Institute of Experimental Cardiology, Russian Cardiology Complex, Moscow 121552, Russia Glucuronidation, a major metabolic pathway for a pollutants (1). This reaction consists in the transfer of the large variety of endobiotics and xenobiotics, is cata- glucuronosyl group from UDP-glucuronic acid to the acceptor lyzed by enzymes belonging to the UDP-glucuronosyl- molecule (1). The addition of the glucuronosyl group on a com- transferase (UGT) family. Among UGT enzymes, pound results in a more water-soluble molecule, which can be UGT2B4 conjugates a large variety of endogenous and excreted into bile or urine. Glucuronidation is catalyzed by Downloaded from exogenous molecules and is considered to be the major enzymes belonging to the UDP-glucuronosyltransferase (UGT) bile acid conjugating UGT enzyme in human liver. In the family, and based on primary structure homology, UGT pro- present study, we identify UGT2B4 as a novel target teins have been divided into two major subfamilies, UGT1A gene of the nuclear receptor peroxisome proliferator- and UGT2B (2). -
A High Throughput Ultrafiltration LC-MS Platform for the Discovery of Vitamin D Receptor Ligands
A High Throughput Ultrafiltration LC-MS Platform for the Discovery of Vitamin D Receptor Ligands BY Jerry James White B.S. (University of California at Riverside) 2006 THESIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medicinal Chemistry in the Graduate College of the Univeristy of Illinois at Chicago, 2012 Chicago, Illinois Defense Committee: Richard B. van Breemen, Advisor and Chair Dejan Nikolic Pavel Petukhov Brian Murphy Adam Negrusz, Biopharmaceutical Sciences Copyright Jerry James White 2012 ACKNOWLEDGEMENTS This dissertation would not have been completed without the support of family, friends, fellow graduate students, the medicinal chemistry faculty, and my advisor, Dr. Richard B. van Breemen. To Dr. van Breemen I would like to state my appreciation for fostering my scientific development in his lab, through his highly technical knowledge, practical advice and his patient disposition. I thank my dissertation committee members, Dr. Brian Murphy, Dr. Dejan Nikolic, Dr. Adam Negursz, and Dr. Pavel Pethukov, for their support and guidance with my research project. I would like to thank Mr. Rich Morrissy for his advice both in the laboratory and outside of the lab. Drs. Dejan Nikolic, Carrie Crot, and Yongsoo Choi I would also like to thank for their constant guidance during the course of my graduate education. There have been many graduate students that have stimulated intellectual debates that have shaped my research. I would like to recognize, Drs. Jeff Dahl and Shunyun Mo, Ms. Yang Yuan, Xi Qiu, Linlin Dong, Kevin Krock, and Jay Kalin. Finally, I would like to thank my wife for her love and support and by simply being pa- tient when life looked bleak at times.