Privacy-Preserving Similar Patient Queries for Combined Biomedical Data

Total Page:16

File Type:pdf, Size:1020Kb

Privacy-Preserving Similar Patient Queries for Combined Biomedical Data Proceedings on Privacy Enhancing Technologies ; 2019 (1):47–67 Ahmed Salem*, Pascal Berrang, Mathias Humbert, and Michael Backes Privacy-Preserving Similar Patient Queries for Combined Biomedical Data Abstract: The decreasing costs of molecular profiling Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16. have fueled the biomedical research community with a plethora of new types of biomedical data, enabling a breakthrough towards more precise and personalized 1 Introduction medicine. Naturally, the increasing availability of data also enables physicians to compare patients’ data and With the plummeting costs of molecular profiling, and treatments easily and to find similar patients in order in particular whole-genome sequencing, the amount of to propose the optimal therapy. Such similar patient personal biomedical data available is rapidly increasing. queries (SPQs) are of utmost importance to medical This new data availability has positively affected the practice and will be relied upon in future health infor- research in medicine by enabling the development of re- mation exchange systems. While privacy-preserving so- search directions that were previously impossible due to lutions have been previously studied, those are limited the lack of data. Whole-genome sequencing has enabled to genomic data, ignoring the different newly available biomedical researchers to identify the relations between types of biomedical data. a plethora of severe diseases and the genomic muta- In this paper, we propose new cryptographic techniques tions responsible for them. For instance, links have been for finding similar patients in a privacy-preserving man- found between some genomic variants and the risk of de- ner with various types of biomedical data, including veloping Alzheimer’s disease [1]. However, the genome genomic, epigenomic and transcriptomic data as well is only the tip of the iceberg concerning the current as their combination. We design protocols for two of biomedical data deluge. the most common similarity metrics in biomedicine: the Researchers have shown that aberrant levels of other Euclidean distance and Pearson correlation coefficient. types of biomedical data, such as epigenomic or tran- Moreover, unlike previous approaches, we account for scriptomic data, could indicate its owner carrying a se- the fact that certain locations contribute differently to vere disease, such as diabetes, neurodegenerative dis- a given disease or phenotype by allowing to limit the eases, heart diseases or cancers [2–4]. Two of the most query to the relevant locations and to assign them dif- important epigenetic elements in the human body, DNA ferent weights. Our protocols are specifically designed methylation and microRNAs (miRNAs), have been as- to be highly efficient in terms of communication and sociated with numerous diseases as well. For example, bandwidth, requiring only one or two rounds of com- abnormal DNA methylation patterns, such as hyper- or munication and thus enabling scalable parallel queries. hypomethylation, are often observed for cancer patients, We rigorously prove our protocols to be secure based on leading to the hyper-activation of genes such as onco- cryptographic games and instantiate our technique with genes, or the silencing of tumor suppressor genes [5]. three of the most important types of biomedical data – Dysregulation of microRNA expression has also been namely DNA, microRNA expression, and DNA methy- shown to be linked to several types of cancer [6]. Finally, lation. Our experimental results show that our protocols the combination of different kinds of biomedical data is can compute a similarity query over a typical number of an auspicious and growing direction of research. For in- positions against a database of 1,000 patients in a few seconds. Finally, we propose and formalize strategies to mitigate the threat of malicious users or hospitals. *Corresponding Author: Ahmed Salem: CISPA, Saar- Keywords: Biomedical data privacy land University, E-mail: [email protected] Pascal Berrang: CISPA, Saarland University, E-mail: pas- DOI 10.2478/popets-2019-0004 [email protected] Mathias Humbert: Swiss Data Science Center, ETH Zurich and EPFL, E-mail: mathias.humbert@epfl.ch Michael Backes: CISPA Helmholtz Center i.G., E-mail: [email protected] Privacy-Preserving Similar Patient Queries for Combined Biomedical Data 48 stance, Hamed et al. study the relation between breast queries based on two similarity measures widely used in cancer and the combination of various data such as DNA the biomedical context: the Euclidean distance and the methylation, microRNA expression, and genomic vari- Pearson correlation coefficient. ants [7]. Speicher and Pfeiger combine DNA methyla- Since the secure computation of Pearson correla- tion, microRNA expression, and gene expression for in- tion coefficient involves squaring of ciphertexts, we also tegrative analysis of tumor samples [8, 9]. propose an efficient extension for additively homomor- As biomedical data are increasingly available, it be- phic encryption schemes that enables the squaring of comes easier to compare patients’ data with each other. ciphertexts. An additional requirement on the encryp- This functionality is of utmost importance to be able to tion scheme is that it also supports scalar multiplication find similar patients and, e.g., check how they responded of ciphertexts. Our extension is based on the work of to different therapies. In this context, the Global Al- Catalano and Fiore [31], adapting their idea to squar- liance for Genomics and Health (GA4GH) has devel- ing and improving the efficiency in terms of ciphertext oped the MatchMaker Exchange [10], a platform that size and decryption time. We also prove our extension facilitates rare disease gene discovery through a fed- to be secure with regard to ciphertext indistinguishabil- erated network of genotype and phenotype databases. ity under chosen plaintext attacks. We instantiate our It typically answers requests such as “do you have any protocols and the proposed extension with the Paillier patients similar to one who has hypertelorism with a cryptosystem. deleterious variant in CASQ2”, where the similarity is We consider three different settings of information defined by the receiving system. However, due to the se- released to the parties involved in our protocols, thus rious privacy concerns related to genomic data [11–16], offering some flexibility to the system designer. These but also epigenomic and transcriptomic data [17–21], we range from both queried and querying parties learning anticipate that any similarity computation will have to only whether the similarity measure is below or above be performed privately in the near future, i.e., without a predefined threshold (boolean outcome) to one of the disclosing the patients’ raw biomedical data. two parties learning the final similarity measure and the While privacy-preserving similar patient queries other learning the boolean outcome. The latter case can have been previously studied in the literature, these so- be helpful when the querying party (e.g., a physician) lutions have been practically limited to whole-genome wants to know to which extent his patient is similar queries [22–24]. In this paper, we propose new methods to patients in the queried party’s database (e.g., in a that allow us to find similar patients based on various hospital’s database). All our protocols are designed with types of biomedical data, such as genomic, epigenomic, a focus on keeping the communication overhead low, and transcriptomic data, and to combine them if nec- running in only one or two rounds of communication essary. Moreover, our approach easily allows the users depending on the chosen setting. This allows for scalable to query specific locations instead of the whole genome. parallel queries, effectively reducing the number of open This is especially important as omics-based diseases and connections and the bandwidth on the hospital’s side. therapies are always related to a limited set of positions We rigorously prove our protocols to be secure in [25–30]. Moreover, it easily allows a medical practitioner the presence of honest-but-curious user and hospital. to find similar patients carrying a certain disease by Moreover, we provide an in-depth discussion and for- querying the relevant disease markers for the chosen set malize countermeasures to prevent inferences from ma- of biomedical data types. Finally, it is generic enough licious users or hospitals. Finally, we implement and to adapt to the functionality of any health information test the different protocols using various combinations exchange platform, such as the MatchMaker Exchange. of data. These show that we can query a typical num- ber of biomedical data positions against a database of 1,000 patients in less than five seconds for the weighted Contributions Euclidean distance protocol, and in less than thirty sec- In this paper, we introduce the first privacy-preserving onds for the Pearson correlation coefficient. This demon- similar patient query system that can handle differ- strates that our approach is efficient and highly practical ent biomedical data types, while enabling the users to in current clinical and research settings. query a specific subset of positions and to put different weights on these positions or data types. Our system relies on additively homomorphic encryption and imple- ments different protocols for performing similar patient Privacy-Preserving Similar Patient Queries for Combined
Recommended publications
  • Development of Secure Software with Security by Design
    FRAUNHOFER INSTITUTE FOR SECURE INFORMATION TECHNOLOGY SIT TECHNICAL REPORTS Trends and Strategy Report Development of Secure Software with Security By Design Michael Waidner, Michael Backes, Jörn Müller-Quade FRAUNHOFER VERLAG C ISPA Center for IT -Security, Privacy and Accountability Competence Centers for Cyber Security Development of Secure Software with Security by Design Michael Waidner (Hrsg.), Michael Backes (Hrsg.), Jörn Müller-Quade (Hrsg.), Eric Bodden, Markus Schneider, Michael Kreutzer, Mira Mezini, Christian Hammer, Andreas Zeller, Dirk Achenbach, Matthias Huber, Daniel Kraschewski SIT Technical Reports SIT-TR-2014-03 July 2014 Fraunhofer Institute for Secure Information Technology SIT Rheinstraße 75 64295 Darmstadt Germany This trends and strategy report has been funded by the German Federal Ministry of Education and Research. FRAUNHOFER VERLAG IMPRINT Contact Fraunhofer Institute for Secure Information Technology SIT Rheinstraÿe 75 64295 Darmstadt Germany Phone +49 (0) 6151 869-213 Fax +49 (0) 6151 869-224 E-Mail [email protected] URL www.sit.fraunhofer.de Ed. Michael Waidner SIT Technical Reports SIT-TR-2014-03: Development of Secure Software with Security by Design Michael Waidner (Hrsg.), Michael Backes (Hrsg.), Jörn Müller-Quade (Hrsg.), Eric Bodden, Markus Schneider, Michael Kreutzer, Mira Mezini, Christian Hammer, Andreas Zeller, Dirk Achenbach, Matthias Huber, Daniel Kraschewski ISBN 978-3-8396-0768-8 ISSN 2192-8169 Printing: Mediendienstleistungen des Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart Printed on acid-free and chlorine-free bleached paper. All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, record- ing or otherwise, without the written permission of the publisher.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Rati Devidze Personal Data Place and Date of Birth: Chiatura, Georgia | 1994 Address: Campus E1.5, Saarbrücken, Germany Phone: +49 1577 4107975 email: [email protected] Web Site: Rati Devidze Education 10/2018 - Today PhD student at Max Planck Institute for Software Systems Saarbrücken, Germany Interests: Machine Learning, Machine Teaching, Reinforcement Learning 10/2016 - 09/2018 Graduate School of Computer Science Saarland University, Saarbrücken, Germany Selected Courses: The Elements of Statistical Learning, Deep Learning, Information Retrieval and Data Mining, Cryptography, Database Systems 09/2012 - 07/2016 Bachelor of Science, Computer Science Tbilisi State University, Tbilisi, Georgia Selected Courses: Algorithms and Data Structures, Statistics, Discrete Mathematics, Operation Research, Multivariable Calculus, Linear Algebra Gpa: 4/4 08/2014 - 09/2014 DAAD Summer School RWTH Aachen University, Aachen, Germany Work Experience 03/2016 - 08/2016 .Net Software Developer Prodware Group Tbilisi, Georgia • Implemented new software products for business ideas • Added new functionalities to existing softwares and fix old bugs 04/2014 - 03/2016 Engineer Programmer Akhali Kselebi Ltd Tbilisi, Georgia • Implemented desktop applications for the station operators • Analysed international call statistic using ASP.NET • Implemented Windows and Web-services of billing system for Telecommunications Projects 03/2018 - 05/2018 MPI-SWS Research Immersion lab with Dr. Adish Singla • Worked on the iterative machine teaching problem in the context of Markov Decision Process • Implemented Markov Decision Process solver and did experi- ments to evaluate theoretical results 07/2017 - 09/2017 CISPA Research Immersion lab with Prof. Michael Backes • Worked on accountability of security protocols • Analyzed security of these protocols using theorem prover Tamarin 03/2014 - 07/2014 Tbilisi State University Semester Project with Prof.
    [Show full text]
  • Computer Security -- ESORICS 2002
    Lecture Notes in Computer Science 2502 Computer Security -- ESORICS 2002 7th European Symposium on Research in Computer Security Zurich, Switzerland, October 14-16, 2002, Proceedings Bearbeitet von Dieter Gollmann, Günter Karjoth, Michael Waidner 1. Auflage 2002. Taschenbuch. cccviii, 298 S. Paperback ISBN 978 3 540 44345 2 Format (B x L): 15,5 x 23,5 cm Gewicht: 960 g Weitere Fachgebiete > EDV, Informatik > Datenbanken, Informationssicherheit, Geschäftssoftware > Zeichen- und Zahlendarstellungen Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface ESORICS, the European Symposium on Research in Computer Security, is the leading research-oriented conference on the theory and practice of computer security in Europe. It takes place every two years, at various locations throughout Europe, and is coordinated by an independent Steering Committee. ESORICS 2002 was jointly organized by the Swiss Federal Institute of Tech- nology (ETH) and the IBM Zurich Research Laboratory, and took place in Zurich, Switzerland, October 14-16, 2002. The program committee received 83 submissions, originating from 22 coun- tries. For fans of statistics: 55 submissions came from countries in Europe, the Middle East, or Africa, 16 came from Asia, and 12from North America. The leading countries were USA (11 submissions), Germany (9), France (7), Italy (7), Japan (6), and UK (6). Each submission was reviewed by at least three pro- gram committee members or other experts.
    [Show full text]
  • Conditional Reactive Simulatability
    Conditional Reactive Simulatability Michael Backes1, Markus Dürmuth1, Dennis Hofheinz2, and Ralf Küsters3 1 Saarland University, {backes|duermuth}@cs.uni-sb.de 2 CWI, Cryptology and Information Security Group, Prof. Dr. R. Cramer, [email protected] 3 Christian-Albrechts-Universität zu Kiel, [email protected] Abstract. Simulatability has established itself as a salient notion for defining and proving the security of cryptographic protocols since it entails strong security and compositionality guarantees, which are achieved by universally quantifying over all environmental behaviors of the analyzed protocol. As a consequence, however, protocols that are secure except for certain environmental behaviors are not simulatable, even if these behaviors are efficiently identifiable and thus can be prevented by the surrounding protocol. We propose a relaxation of simulatability by conditioning the permitted environ- mental behaviors, i.e., simulation is only required for environmental behaviors that fulfill explicitly stated constraints. This yields a more fine-grained security definition that is achievable for several protocols for which unconditional simu- latability is too strict a notion, or at lower cost for the underlying cryptographic primitives. Although imposing restrictions on the environment destroys uncon- ditional composability in general, we show that the composition of a large class of conditionally simulatable protocols yields protocols that are again simulatable under suitable conditions. This even holds for the case of cyclic assume-guarantee conditions where protocols only guarantee suitable behavior if they themselves are offered certain guarantees. Furthermore, composing several commonly inves- tigated protocol classes with conditionally simulatable subprotocols yields proto- cols that are again simulatable in the standard, unconditional sense.
    [Show full text]
  • Progress Report of the Max Planck Institute for Software Systems (MPI-SWS)
    Progress Report of the Max Planck Institute for Software Systems (MPI-SWS) May 2011 { October 2013 Contents 1 State of the Institute 7 1.1 General overview of the institute . .7 1.2 The state of the institute, and recent accomplishments . 13 I Current Research Groups 19 2 The Real-Time Systems Group 21 2.1 Overview . 21 2.2 Research agenda . 23 3 The Robust Systems Group 27 3.1 Overview . 27 3.2 Research agenda . 28 4 The Social Information Systems Group 33 4.1 Overview . 33 4.2 Research agenda . 34 5 The Foundations of Programming Group 39 5.1 Overview . 39 5.2 Research agenda . 41 6 The Distributed Systems Group 47 6.1 Overview . 47 6.2 Research agenda . 49 7 The Large Scale Internet Systems Group 53 7.1 Overview . 53 7.2 Research agenda . 54 8 The Foundations of Computer Security Group 59 8.1 Overview . 59 8.2 Research agenda . 60 9 The Networked Systems Group 65 9.1 Overview . 65 9.2 Research agenda . 67 10 The Rigorous Software Engineering Group 73 10.1 Overview . 73 10.2 Research agenda . 75 11 The Software Analysis and Verification Group 81 11.1 Overview . 81 11.2 Research agenda . 82 II Adjunct Research Groups 87 12 The Information Security and Cryptography Group 89 12.1 Overview . 89 12.2 Research agenda . 91 13 The Dependable Systems Group 97 13.1 Overview . 97 13.2 Research agenda . 99 III Former Research Groups 101 14 The Programming Languages and Systems Group 103 14.1 Overview .
    [Show full text]
  • Computationally Sound Secrecy Proofs by Mechanized Flow Analysis
    Computationally Sound Secrecy Proofs by Mechanized Flow Analysis Michael Backes Peeter Laud Department of Mathematics Department of Mathematics and Computer Science and Computer Science Saarland University Tartu University [email protected] [email protected] August 10, 2006 Abstract We present a novel approach for proving secrecy properties of security protocols by mecha- nized flow analysis. In contrast to existing tools for proving secrecy by abstract interpretation, our tool enjoys cryptographic soundness in the strong sense of blackbox reactive simulatabil- ity/UC which entails that secrecy properties proven by our tool are automatically guaranteed to hold for secure cryptographic implementations of the analyzed protocol, with respect to the more fine-grained cryptographic secrecy definitions and adversary models. Our tool is capable of reasoning about a comprehensive language for expressing protocols, in particular handling symmetric encryption and asymmetric encryption, and it produces proofs for an unbounded number of sessions in the presence of an active adversary. We have implemented the tool and applied it to a number of common protocols from the literature. 1 Introduction Security proofs of cryptographic protocols are known to be difficult and the automation of such proofs has been studied soon after the first protocols were developed. From the start, the actual cryptographic operations in such proofs were idealized into so-called Dolev-Yao models, follow- ing [21, 22, 39], e.g., see [30, 47, 1, 37, 44, 12]. This idealization simplifies proof construction by freeing proofs from cryptographic details such as computational restrictions, probabilistic behavior, and error probabilities. Conducting secrecy proofs by typing based on these abstractions has shown to be a particularly salient technique as it allowed for elegant and fully automated proofs, often even for an unbounded number of sessions.
    [Show full text]
  • Interview with Dr. Michael Backes
    GCRI INTERVIEW Prof. Dr. Michael Backes Director of the Center for IT-Security, Privacy, and Accountability (CISPA) Professor, Chair of Information Security & Cryptography, Saarland University What are the most common types of cybercrimes? If we leave out all criminal activities that are both online and offline like fraud, the trade of illegal goods and harassment, then the most common type of cybercrime is the creation and spread of malware to steal sensitive information or for financial gain, e.g. ransomware, banking Trojans as well as denial of service attacks. Most of these attacks exploit common vulnerabilities in old systems, software or protocols. This is why it is crucial for companies and consumers to keep their systems updated, keep regular back-ups and to exercise a healthy suspicion of unexpected emails and new websites. In recent years there has been a dramatic increase in cases of more sophisticated as well as targeted system and network intrusions. These attacks oftentimes specifically target vital infrastructures like energy and financial networks, large corporations, or government agencies. The attackers do this by exploiting new, unknown IT vulnerabilities and getting access to a network through tailored social engineering, which is known as spear-phishing. What do large organizations need to learn from cyber security research to better protect themselves against cybercrimes? Although large organizations are now better equipped for IT security in regard to personnel and financial resources, successful hacks and data theft are reported almost on a daily basis. One of the main reasons is that even large organizations consider IT security as an afterthought during product and network design.
    [Show full text]
  • CV of Dr. Matthias Schunter
    Curriculum Vitae Dr.-Ing. Matthias Schunter Diplom-Informatiker Master of Business Administration Address: Dangelstr. 2 CH-8038 Zurich,¨ Switzerland Contact: Tel. +41 (44) 7 24 83 29, Fax +49 (721) 1 51 29 97 92 http://www.zurich.ibm.com/˜mts, <[email protected]>, <[email protected]> Date of birth: 07/16/1968 in Hechingen, Germany. Nationality: German Languages: German, English (fluent), French, Latin (basic) Current Position: Research Staff Member of the “Security and Assurance” research group at IBM Research, Zurich,¨ Switzerland. Track Record: 8 awards, 16 program committees, 6 refereed journal and 41 refereed conference papers, 8 book chapters, 6 granted patents and 16 pending patent applications, 2 standardization groups, advised students, lectures & academic teaching experience. Contents 1 Education 2 2 Professional Experience 2 3 Professional Activities including Program Committees 4 4 Honors and Awards 6 5 Publications and Patents 7 1 1 Education 06/2010 Master of Business Administration with distinction (MBA) from Warwick Business School, UK wbs.ac.uk Master Thesis: Strategic Implications for Software-as-a-Service for the Financial Services Sector (see [1]). 10/2000 Dr.-Ing. in Computer Science at Saarland University (Grade “sehr gut”; lat. magna cum laude) Ph.D. Thesis: Optimistic Fair Exchange (see [2]). Advisors: Prof. Birgit Pfitzmann, Prof. Joachim Biskup. 09/1989-01/1994 Dipl.-Inform. in Computer Science (comparable to M.S.) at Universitat¨ Hildesheim (Grade 1.0 with honors). Fields of application: Marketing and Logistics Medical Informatics Master Thesis: Specification of Secrecy Properties for Reactive Cryptographic Systems (in German; see [3]). 2 Professional Experience My research topics are computer security assessment and management, enterprise pri- vacy management, secure electronic commerce, security protocols, formal security models.
    [Show full text]
  • Games and the Impossibility of Realizable Ideal Functionality Michael Backes, Anupam Datta, Ante Derek, John Mitchell, Ajith Ramanathan, Andre Scedrov
    Games and the Impossibility of Realizable Ideal Functionality Michael Backes, Anupam Datta, Ante Derek, John Mitchell, Ajith Ramanathan, Andre Scedrov To cite this version: Michael Backes, Anupam Datta, Ante Derek, John Mitchell, Ajith Ramanathan, et al.. Games and the Impossibility of Realizable Ideal Functionality. Workshop on Formal and Computational Cryp- tography (FCC 2006), Véronique Cortier et Steve Kremer, Jul 2006, Venice/Italy. inria-00080683 HAL Id: inria-00080683 https://hal.inria.fr/inria-00080683 Submitted on 20 Jun 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Games and the Impossibility of Realizable Ideal Functionality Michael Backes1, Anupam Datta2, Ante Derek2,JohnC.Mitchell2,Ajith Ramanathan2, and Andre Scedrov3 1 Saarland University [email protected] 2 Stanford University {danupam,aderek,jcm,ajith}@cs.stanford.edu 3 University of Pennsylvania [email protected] Abstract. A cryptographic primitive or a security mechanism can be specified in a variety of ways, such as a condition involving a game against an attacker, construction of an ideal functionality, or a list of properties that must hold in the face of attack. While game conditions are widely used, an ideal functionality is appealing because a mechanism that is indistinguishable from an ideal functionality is therefore guaranteed se- cure in any larger system that uses it.
    [Show full text]
  • From a National Competence Center to a World-Renowned Research
    CISPA Center for IT Security, Privacy and Accountability From a National Competence Center to a 12. June 2017 World-Renowned Research Center Dr.-Ing. Sebastian Gerling Starting point: a regional competence center . Initiative by German Federal Ministry of Education and Research to establish national competence centers for IT‐Security . Three locations chosen: - Darmstadt: EC‐SPRIDE/Cased (today: CRISP) - Karlsruhe: Kastel - Saarbrücken: CISPA . CISPA was founded on Oct 1st, 2011. Team was about 10‐15 researchers. Founder: Prof. Michael Backes 1 CISPA Center for IT Security, Privacy and Accountability CISPA, Saarbrücken Inspiring Environment as Catalyst 2 CISPA Center for IT Security, Privacy and Accountability 1st phase BMBF funding ERC Synergy Grant Synergy Grant imPACT Foundation of the center EIT ICT Master Security and Privacy Synergy Grant • Most prestigious research price of the European Commission “to promote substantial advances in the frontier of knowledge and to achieve scientific breakthroughs”. • 2014 for the first time in computer science • Funding volume: 10 Million euros • The solution for the problems of tomorrow‘s internet: • Protection of privacy, e.g., in social networks Michael Backes • Accountability of users and providers Direktor des CISPA Peter Druschel • Compliance of software and services with user expectations, Stellvertretender Direktor des CISPA Rupak Majumdar applicable laws and provider policies CISPA‐Associate Researcher Gerhard Weikum • Trustworthiness of information Principal Investigator des CISPA 3
    [Show full text]
  • Yang Zhang – CV
    Yang Zhang | CV Q [email protected] • yangzhangalmo.github.com last update: June 9, 2020 Employment CISPA Helmholtz Center for Information Security Saarbrücken, Germany Faculty Member February 2020 – CISPA Helmholtz Center for Information Security Saarbrücken, Germany Research Group Leader January 2019 – January 2020 CISPA, Saarland University Saarbrücken, Germany Postdoctoral Researcher January 2017 – December 2018 Host: Michael Backes Education University of Luxembourg Luxembourg, Luxembourg Ph.D. in Computer Science, highest honor December 2012 – November 2016 Supervisor: Sjouke Mauw and Jun Pang Shandong University Jinan, China Master in Computer Science September 2009 – June 2012 University of Luxembourg Luxembourg, Luxembourg Master in Informatics, exchange student September 2010 – October 2011 Shandong University Jinan, China Bachelor in Software Engineering September 2005 – June 2009 Research Projects Leading Scientist Helmholtz Medical Security, Privacy, and AI Research Center November 2018 - co-PI Helmholtz Pilot Funding “TFDA” (~120,000 Euro) December 2019 - November 2022 Research Interests Privacy, Machine Learning, Social Network Analysis, Algorithmic Fairness, Urban Informatics Service + PC member - CCS 2020 2019, WWW 2020, ICWSM 2020 2018, RAID 2020, PETS 2021 2020, ESORICS 2020, Socinfo 2020 2019, ISMB/ECCB 2019, SACMAT 2020 2019, TrustCom 2019 + External reviewer - CSCW 2018, ICWSM 2019, CCS 2018, S&P 2019 2018, NDSS 2020, USENIX Security 2017, 1/6 Euro S&P 2018, ESORICS 2017, PETS 2019 2017 - IEEE TKDE, PLOS ONE, PeerJ Awards + Best paper award, ARES 2014 + Distinguished paper award, NDSS 2019 (4/521) Publication Conference...................................................................................................... [1] Rui Wen and Yu Yu and Xiang Xie and Yang Zhang. LEAF: A Faster Secure Search Algorithm via Localization, Extraction, and Reconstruction. In ACM SIGSAC Conference on Computer and Communications Security (CCS).
    [Show full text]
  • Technical Report: on Simulatability Soundness and Mapping Soundness of Symbolic Cryptography⋆
    Technical Report: On Simulatability Soundness and Mapping Soundness of Symbolic Cryptography? Michael Backes1, Markus D¨urmuth1, and Ralf K¨usters2 1 Saarland University, Saarbr¨ucken, Germany, {backes|duermuth}@cs.uni-sb.de 2 ETH Z¨urich, Switzerland, [email protected] January 23, 2010 Abstract. The abstraction of cryptographic operations by term algebras, called Dolev-Yao models or symbolic cryptography, is essential in almost all tool-supported methods for proving security protocols. Recently significant progress was made { using two conceptually different approaches { in proving that Dolev-Yao models can be sound with respect to actual crypto- graphic realizations and security definitions. One such approach is grounded on the notion of simulatability, which constitutes a salient technique of Modern Cryptography with a long- standing history for a variety of different tasks. The other approach strives for the so-called mapping soundness { a more recent technique that is tailored to the soundness of specific security properties in Dolev-Yao models, and that can be established using more compact proofs. Typically, both notions of soundness for similar Dolev-Yao models are established separately in independent papers. In this paper, the two approaches are related for the first time. Our main result is that simulatability soundness entails mapping soundness provided that both approaches use the same cryptographic implementation. Interestingly, this result does not dependent on details of the simulator, which translates between cryptographic implementations and their Dolev- Yao abstractions in simulatability soundness. Hence, future research may well concentrate on simulatability soundness whenever applicable, and resort to mapping soundness in those cases where simulatability soundness is too strong a notion.
    [Show full text]