Review of the Status and Conservation of Tenrecs (Mammalia: Afrotheria: Tenrecidae)

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Status and Conservation of Tenrecs (Mammalia: Afrotheria: Tenrecidae) Review of the status and conservation of tenrecs (Mammalia: Afrotheria: Tenrecidae) P. J. STEPHENSON,VOAHANGY S OARIMALALA,STEVEN M. GOODMAN M ARTIN E. NICOLL,VONJY A NDRIANJAKARIVELO,KATHRYN M. EVERSON M ICHAEL H OFFMANN,PAULINA D. JENKINS,LINK E. OLSON M ARTIN R AHERIARISENA,FELIX R AKOTONDRAPARANY D ANIEL R AKOTONDRAVONY,VOLOLOMBOAHANGY R ANDRIANJAFY N ANIE R ATSIFANDRIHAMANANA and A NDREW T AYLOR Abstract The mammal family Tenrecidae (Afrotheria: and-burn agriculture, but some species are also threatened Afrosoricida) is endemic to Madagascar. Here we present by hunting and incidental capture in fishing traps. In the the conservation priorities for the species of tenrec that longer term, climate change is expected to alter tenrec habi- were assessed or reassessed in – for the IUCN tats and ranges. However, the lack of data for most tenrecs Red List of Threatened Species. Six species (.%) were on population size, ecology and distribution, together with found to be threatened ( Vulnerable, Endangered) and frequent changes in taxonomy (with many cryptic species one species was categorized as Data Deficient. The primary being discovered based on genetic analyses) and the poorly threat to tenrecs is habitat loss, mostly as a result of slash- understood impact of bushmeat hunting on spiny species (Tenrecinae), hinders conservation planning. Priority con- servation actions are presented for Madagascar’s tenrecs for the first time since and focus on conserving forest habi- P. J. STEPHENSON* (Corresponding author, orcid.org/0000-0002-0087-466X) tat (especially through improved management of protected IUCN SSC Species Monitoring Specialist Group, c/o Ecosystem Management areas) and filling essential knowledge gaps. Tenrec research, Group, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. E-mail [email protected] monitoring and conservation should be integrated into broader sustainable development objectives and pro- VOAHANGY SOARIMALALA† ( orcid.org/0000-0002-2455-2956) and STEVEN M. GOODMAN‡ ( orcid.org/0000-0001-9318-0570) Association Vahatra, grammes targeting higher profile species, such as lemurs, Antananarivo, Madagascar if we are to see an improvement in the conservation status MARTIN E. NICOLL ( orcid.org/0000-0003-2647-5808) Conservation of tenrecs in the near future. Programme, WWF-Madagascar, Antananarivo, Madagascar Keywords VONJY ANDRIANJAKARIVELO ( orcid.org/0000-0001-9025-073X) Madagascar Afrotheria, conservation, IUCN Red List of Program, Wildlife Conservation Society, Maroantsetra, Madagascar Threatened Species, Madagascar, Microgale, Oryzorictes, KATHRYN M. EVERSON ( orcid.org/0000-0003-1495-7076) and LINK E. OLSON Tenrecidae, threats ( orcid.org/0000-0002-2481-5701) Department of Biology and Wildlife, University of Alaska Museum, Fairbanks, Alaska, USA MICHAEL HOFFMANN ( orcid.org/0000-0003-4785-2254) Global Conservation Programmes, Zoological Society of London, London, UK PAULINA D. JENKINS ( orcid.org/0000-0002-8250-0601) Life Sciences Department, The Natural History Museum, London, UK Introduction MARTIN RAHERIARISENA,FELIX RAKOTONDRAPARANY and DANIEL RAKOTONDRAVONY ’ Mention Zoologie et Biodiversité Animale, Université d Antananarivo, he mammal family Tenrecidae (Supercohort Afrotheria: Antananarivo, Madagascar Order Afrosoricida), endemic to the Indian Ocean is- OLOLOMBOAHANGY ANDRIANJAFY T V R Faculté des Sciences, de Technologie et de l’Environnement, Université de Mahajanga, Mahajanga, Madagascar land of Madagascar, contains currently recognized extant species in three subfamilies: the Geogalinae ( species), NANIE RATSIFANDRIHAMANANA WWF-Madagascar, Antananarivo, Madagascar Oryzorictinae () and Tenrecinae (). The tailless tenrec ANDREW TAYLOR ( orcid.org/0000-0002-2896-5168) Wildlife in Trade Programme, The Endangered Wildlife Trust, Johannesburg, South Africa Tenrec ecaudatus has been introduced by humans to neigh- *Also at: Science & Knowledge Unit, IUCN, Gland, Switzerland bouring archipelagos. Tenrecs exhibit a diverse array of †Also at: Institut des Sciences et Techniques de l’Environnement, Université de body sizes and morphological, behavioural, physiological Fianarantsoa, Fianarantsoa, Madagascar and ecological specializations, representing an adaptive ‡Also at: Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA radiation that is a model for evolutionary research Received May . Revision requested July . (e.g. Eisenberg & Gould, ; Stephenson & Racey, ; Accepted September . First published online April . Olson & Goodman, ; Everson et al., ). This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, Downloadeddistribution, from https://www.cambridge.org/core and reproduction in any medium,. IP address: provided 86.111.137.212 the original work, on is 11 properly Jan 2021 cited. at 12:46:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/termsOryx, 2021, 55(1), 13–22 © The. https://doi.org/10.1017/S0030605318001205 Author(s), 2019. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605318001205 14 P. J. Stephenson et al. Most tenrecs are dependent on forest habitats, and, with can also be considered Data Deficient ‘when there is inad- Madagascar having lost c. % of its forests in the last equate information to make a direct or indirect assessment years (Harper et al., ), the conservation status of of its risk of extinction’ (IUCN, ). During the second many species is of concern. If the biodiversity of the country stage of the review, a workshop was held in April is to be conserved, its fauna and flora need to be assessed by the Tenrec Section of the IUCN Species Survival regularly and relevant conservation strategies must be Commission (SSC) Afrotheria Specialist Group, associated developed. with the th African Small Mammals Symposium in The IUCN Red List of Threatened Species (IUCN, ; Mantasoa, Madagascar, to review the data collected and hereafter the IUCN Red List) is the most widely used tool the draft assessments. At that time, we also developed for assessing the conservation status of species. Any new conservation priorities based on identified threats (as per data for the IUCN Red List not only advances the knowl- the Open Standards for the Practice of Conservation; edge needed to define conservation action but also pro- Conservation Measures Partnership, ). During the vides countries with data against which to report on their third stage, we conducted a literature review on broader environmental goals, such as those defined in the Aichi conservation issues in Madagascar, to refine and finalize Targets and Sustainable Development Goals (Brooks the priorities. et al., ). There is ongoing discussion about tenrec systematics Here we review the current conservation status of the (e.g. Poux et al., ; Asher & Helgen, ; Everson Tenrecidae, as defined in the last species assessments con- et al., ). To ensure we consider the latest recognized ducted for the IUCN Red List in –,withtheaimof taxonomies, here we treat the three species of otter-shrew identifying trends in extinction risk, habitat needs and on mainland Africa (once considered tenrecs) as a separate threats. We also identify conservation priorities to ensure family, the Potamogalidae (following Everson et al., ). a future for these poorly known small mammals. This is We similarly follow those authors’ synonymization of the the first time the conservation needs of tenrecs have genus Limnogale with Microgale (see also Asher & Helgen, been compiled for almost decades (Nicoll & Rathbun, ) and placement of the large-bodied shrew tenrecs ). Microgale dobsoni and Microgale talazaci in the genus Nesogale. Methods Extinction risk We conducted this review in three stages. Firstly, during –, we reassessed the status of all species in the Of the species assessed, (.%) were categorized as Tenrecidae for the IUCN Red List (IUCN, ). Least Concern, one species (.%) as Data Deficient Grandidier’s shrew tenrec Microgale grandidieri had not (Oryzorictes tetradactylus), four species (.%) as Vulner- been assessed before as it was described only in able (Microgale dryas, Microgale mergulus, Microgale mon- (Olson et al., ), subsequent to the last comprehensive ticola, Microgale nasoloi) and two (.%) as Endangered assessment of all mammals (Schipper et al., ). Using (Microgale jenkinsae, Microgale jobihely; Table ). In this information available for each species from the literature, assessment, all species were placed in the same Red List such as the latest georeferenced distribution data collated category as in previous assessments in and by Goodman et al. () and past and recent assessments (Hoffmann et al., ). The status of some species has re- of threats to and conservation priorities for tenrecs (e.g. mained constant for much longer. For example, the aquatic Nicoll & Rathbun, ; Stephenson, a,b, , a; tenrec M. mergulus was also considered Vulnerable years Stephenson et al., ; Jenkins et al., ; Nicoll & ago when it was first assessed. This consistency across as- Ratsifandrihamanana, ), and based on the assessors’ sessments probably reflects the lack of concrete data on knowledge, we collated data on geographical range (includ- the impact of continued forest loss on population numbers. ing area of occupancy or extent of occurrence), estimated Grandidier’s shrew
Recommended publications
  • Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale Lamottei , and the Madagascar Hedgehog Tenrec, Echinops Telfairi
    Original Paper Cells Tissues Organs 2005;179:179–191 Accepted after revision: March 7, 2005 DOI: 10.1159/000085953 Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale lamottei , and the Madagascar Hedgehog Tenrec, Echinops telfairi a b c d A.C. Enders A.M. Carter H. Künzle P. Vogel a Department of Cell Biology and Human Anatomy, University of California, Davis, Calif. , USA; b Department of Physiology and Pharmacology, University of Southern Denmark, Odense , Denmark; c d Department of Anatomy, University of Munich, München , Germany, and Department of Ecology and Evolution, University of Lausanne, Lausanne , Switzerland Key Words es between the more peripheral granulosa cells. It is sug- Corpora lutea Non-antral follicles Ovarian gested that this fl uid could aid in separation of the cu- lobulation Afrotheria mulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral Abstract follicles. Ovaries with a thin-absent tunica albuginea and The otter shrews are members of the subfamily Potamo- follicles with small-absent antra are widespread within galinae within the family Tenrecidae. No description of both the Eulipotyphla and in the Afrosoricida, suggest- the ovaries of any member of this subfamily has been ing that such features may represent a primitive condi- published previously. The lesser hedgehog tenrec, Echi- tion in ovarian development. Lobulated and deeply nops telfairi, is a member of the subfamily Tenrecinae of crypted ovaries are found in both groups but are not as the same family and, although its ovaries have not been common in the Eulipotyphla making inclusion of this fea- described, other members of this subfamily have been ture as primitive more speculative.
    [Show full text]
  • Afrotherian Conservation – Number 16
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 16 Edited by PJ Stephenson September 2020 Afrotherian Conservation is published annually by the measure the effectiveness of SSC’s actions on biodiversity IUCN Species Survival Commission Afrotheria Specialist conservation, identification of major new initiatives Group to promote the exchange of news and information needed to address critical conservation issues, on the conservation of, and applied research into, consultations on developing policies, guidelines and aardvarks, golden moles, hyraxes, otter shrews, sengis and standards, and increasing visibility and public awareness of tenrecs. the work of SSC, its network and key partners. Remarkably, 2020 marks the end of the current IUCN Published by IUCN, Gland, Switzerland. quadrennium, which means we will be dissolving the © 2020 International Union for Conservation of Nature membership once again in early 2021, then reassembling it and Natural Resources based on feedback from our members. I will be in touch ISSN: 1664-6754 with all members at the relevant time to find out who wishes to remain a member and whether there are any Find out more about the Group people you feel should be added to our group. No one is on our website at http://afrotheria.net/ASG.html automatically re-admitted, however, so you will all need to and on Twitter @Tweeting_Tenrec actively inform me of your wishes. We will very likely need to reassess the conservation status of all our species during the next quadrennium, so get ready for another round of Red Listing starting Message from the Chair sometime in the not too distant future.
    [Show full text]
  • Chromosomal Evolution in Tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar
    Chromosome Research (2007) 15:1075–1091 # Springer 2007 DOI: 10.1007/s10577-007-1182-6 Chromosomal evolution in tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar C. Gilbert1, S. M. Goodman2,3, V. Soarimalala3,4, L. E. Olson5,P.C.M.O_Brien6, F. F. B. Elder7, F. Yang8, M. A. Ferguson-Smith6 & T. J. Robinson1* 1Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa; Tel: +27-21-8083955; Fax: +27-21-8082405; E-mail: [email protected]; 2Department of Zoology, Field Museum of Natural History, Lake Shore Drive, Chicago, IL, USA; 3Vahatra, BP 738, Antananarivo (101), Madagascar; 4De´partement de Biologie Animale, Universite´ d_Antananarivo, BP 906, Antananarivo (101), Madagascar; 5University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; 6Centre for Veterinary Science, University of Cambridge, Cambridge, UK; 7Department of Pathology, Cytogenetics Laboratory, UT Southwestern Medical Center, Dallas, TX, USA; 8The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence Received 13 August 2007. Received in revised form and accepted for publication by Pat Heslop-Harrison 2 October 2007 Key words: Afrotheria, cytogenetics, evolution, speciation, Tenrecidae Abstract Tenrecs (Tenrecidae) are a widely diversified assemblage of small eutherian mammals that occur in Madagascar and Western and Central Africa. With the exception of a few early karyotypic descriptions based on conventional staining, nothing is known about the chromosomal evolution of this family. We present a detailed analysis of G-banded and molecularly defined chromosomes based on fluorescence in situ hybridization (FISH) that allows a comprehensive comparison between the karyotypes of 11 species of two closely related Malagasy genera, Microgale (10 species) and Oryzorictes (one species), of the subfamily Oryzorictinae.
    [Show full text]
  • Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia
    Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia Martin Pickford Sorbonne Universités (CR2P, UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie) case postale 38, 57 rue Cuvier, 75005 Paris. e-mail: < [email protected] > Abstract : The Late Eocene (Bartonian) Eocliff Limestone has yielded a rich, diverse and well- preserved micromammalian fauna which includes three tenrecoids, a chrysochlorid, several macroscelidids and at least eight taxa of rodents. The available cranio-dental and post-cranial elements reveal that the three tenrecoid species are closely related to potamogalids (one taxon) and to tenrecids (two taxa). The dichotomy between these two families probably occurred a long time before deposition of the Eocliff carbonate, possibly during the Palaeocene or even as early as the Late Cretaceous. The dentitions of the Eocliff potamogalid and tenrecids exhibit primitive versions of protozalambdodonty, in which the upper molars have clear metacones. Three new genera and species are described. Key Words : Potamogalidae, Tenrecidae, Zalambdodonty, Late Eocene, Namibia, Evolution To cite this paper: Pickford, M., 2015. Late Eocene Potamogalidae and Tenrecidae (Mammalia) from the Sperrgebiet, Namibia. Co mmunications of the Geological Survey of Namibia , 16, 114-152. Submitted in 2015. Introduction the suborder Tenrecoidea is not well represented in North Africa. The Late Eocene The discovery of Bartonian vertebrates Namibian fossils thus help to fill extensive in the Sperrgebiet, Namibia, is of major chronological and geographic gaps in the significance for throwing light on the evolution history and distribution of zalambdodont of African Palaeogene mammals, especially mammals in Africa, although the geographic that of rodents, tenrecoids and chrysochlorids position of the deposits from which they were (Pickford et al.
    [Show full text]
  • Endemic Small Mammals Captured Outside of Natural Habitats in the Moramanga District, Central Eastern Madagascar
    Terrestrial “forest-dwelling” endemic small mammals captured outside of natural habitats in the Moramanga District, central eastern Madagascar Toky M. Randriamoria1,2, Voahangy Soarimalala2 petits mammifères, par le biais des trous-pièges et & Steven M. Goodman2, 3 des pièges standards, menées dans cinq villages du 1Département de Biologie Animale, Faculté des District de Moramanga, dans la partie Est-centrale Sciences, Université d’Antananarivo, BP 906, de Madagascar, en 2013 (saison sèche) et en 2014 Antananarivo 101, Madagascar (saison humide) ont permis d’attraper pour la première E-mail: [email protected] fois deux espèces d’Afrosoricida endémiques, 2 Association Vahatra, BP 3972, Antananarivo 101, Microgale majori et M. thomasi, dans des habitats Madagascar anthropogéniques en dehors des forêts naturelles. E-mail: [email protected] La première espèce a été répertoriée dans deux 3Field Museum of Natural History, 1400 South Lake sites (Ambalafary et Antsahatsaka) à travers deux Shore Drive, Chicago, Illinois 60605, USA types d’habitats principaux : la forêt d’Eucalyptus et E-mail: [email protected] le savoka. Le terme savoka désigne des formations végétales secondaires souvent peu pénétrables et correspond à la période de jachère des cultures sur Abstract brûlis. Ces habitats de capture sont situés près de The vast majority of Malagasy rodent (Subfamily 770 m jusqu’à plus de 3 km d’une forêt naturelle. Nesomyinae) and tenrec (Subfamily Oryzorictinae) Concernant M. thomasi, un spécimen a été capturé species living in the eastern humid forest are thought dans un savoka situé à près d’une centaine de to be strictly forest-dwelling. Small mammals surveys mètres d’une forêt naturelle, dans le site de Besakay.
    [Show full text]
  • The African Elephant Under Threat
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 11 Edited by PJ Stephenson October 2015 Afrotherian Conservation is published annually by the To help PJ focus on our conservation work, Chris IUCN Species Survival Commission Afrotheria Specialist and Mathilde Stuart have kindly agreed to take on the Group to promote the exchange of news and information role of editing the next edition of Afrotherian Conservation. on the conservation of, and applied research into, golden Their contacts are in the guidelines for submissions (page moles, sengis, hyraxes, tenrecs and the aardvark. 17). We hope you’ll send them plenty of material for the next edition. Published by IUCN, Gland, Switzerland. © 2015 International Union for Conservation of Nature Galen Rathbun, Cambria, California, USA and Natural Resources & ISSN: 1664-6754 PJ Stephenson, Gland, Switzerland 1 October 2015 Find out more about the Group on our website at http://afrotheria.net/ASG.html and follow us on Twitter @Tweeting_Tenrec Message from the Chairs Galen Rathbun & PJ Stephenson Co-Chairs, IUCN/SSC Afrotheria Specialist Group It’s been a busy twelve months for the group. Sadly, 2015 started with the terrible news that Peter Vogel had passed away. Peter was a global expert on shrews but he was a long-term member of the group due to his specialist knowledge of otter-shrews; he was one of the few biologists to capture and study these illusive afrotheres. We include an obituary to Peter on page 8 and send our Chequered sengi (Rhynchocyon cirnei) by Jonathan Kingdon condolences to his family, friends and colleagues.
    [Show full text]
  • Oomparative Craniological Systematics of the "Tenrecomorpha" (Mammalia: Insectivora)
    Oomparative craniological systematics of the "Tenrecomorpha" (Mammalia: Insectivora) Peter Giere Anke C. Schunke Ulrich Zeller 1 Introduction Insectivore systematics has long been of spécial interest for mammal- ogists in the belief that a member of this group represents the ances¬ tral eutherian stock. Despite this attention, the establishment of a phylogenetic classification based on shared derived characters proved to be diffïcult due to the heterogeneity of the group and the paucity of such characters (cf. Butler 1988, MacPhee and Novacek 1993). In part, this is also true for the taxa identified within the Insectivora. Hère, a doser look will be taken at the 'Tenrecomorpha", consisting of the Malagasy tenrecs and the central and west African otter shrews. Based mainly on palaeontological data, Butler (1972) distinguished the 'Tenrecomorpha" from the Erinaceomorpha, Soricomorpha and View metadata, citation and similar papers at core.ac.uk Chrysochlorida.brought to you by CORE Due to a misidentification of the original material, provided by Horizon / Pleins textes this division ofthe insectivores was abandoned (Butler 1988), and both tenrecs and otter shrews are now subsumed under the Soricomorpha (Butler 1988; cf. MacPhee and Novacek 1993; McKenna and BELL 1997). The label 'Tenrecomorpha" is used hère to facilitate denoting tenrecs and otter shrews and could be used inter- 244 African Small Mammals / Petits mammifères africains changeably with "Tenrecidae" as in Hutterer (1993) or 'Tenrecoidea" as in McKenna and Bell (1997). It is not used hère to distinguish the tenrecs and otter shrews as a higher level taxon to be separated from other insectivore higher taxa. The two gênera of otter shrews, Potamogale and Micropotamogale are generally placed within the Tenrecidae (e.g.
    [Show full text]
  • Order Suborder Infraorder Superfamily Family
    ORDER SUBORDER INFRAORDER SUPERFAMILY FAMILY SUBFAMILY TRIBE GENUS SUBGENUS SPECIES Monotremata Tachyglossidae Tachyglossus aculeatus Monotremata Tachyglossidae Zaglossus attenboroughi Monotremata Tachyglossidae Zaglossus bartoni Monotremata Tachyglossidae Zaglossus bruijni Monotremata Ornithorhynchidae Ornithorhynchus anatinus Didelphimorphia Didelphidae Caluromyinae Caluromys Caluromys philander Didelphimorphia Didelphidae Caluromyinae Caluromys Mallodelphys derbianus Didelphimorphia Didelphidae Caluromyinae Caluromys Mallodelphys lanatus Didelphimorphia Didelphidae Caluromyinae Caluromysiops irrupta Didelphimorphia Didelphidae Caluromyinae Glironia venusta Didelphimorphia Didelphidae Didelphinae Chironectes minimus Didelphimorphia Didelphidae Didelphinae Didelphis aurita Didelphimorphia Didelphidae Didelphinae Didelphis imperfecta Didelphimorphia Didelphidae Didelphinae Didelphis marsupialis Didelphimorphia Didelphidae Didelphinae Didelphis pernigra Didelphimorphia Didelphidae Didelphinae Didelphis virginiana Didelphimorphia Didelphidae Didelphinae Didelphis albiventris Didelphimorphia Didelphidae Didelphinae Gracilinanus formosus Didelphimorphia Didelphidae Didelphinae Gracilinanus emiliae Didelphimorphia Didelphidae Didelphinae Gracilinanus microtarsus Didelphimorphia Didelphidae Didelphinae Gracilinanus marica Didelphimorphia Didelphidae Didelphinae Gracilinanus dryas Didelphimorphia Didelphidae Didelphinae Gracilinanus aceramarcae Didelphimorphia Didelphidae Didelphinae Gracilinanus agricolai Didelphimorphia Didelphidae Didelphinae
    [Show full text]
  • The Middle and Inner Ears of the Palaeogene Golden Mole
    The middle and inner ears of the Palaeogene golden mole Namachloris: a comparison with extant species Matthew J. Mason 1* Nigel C. Bennett 2 Martin Pickford 3 1 University of Cambridge Department of Physiology, Development & Neuroscience Downing Street Cambridge CB2 3EG UK 2 University of Pretoria Department of Zoology and Entomology Pretoria 0002 South Africa 3 Sorbonne Universités CR2P, UMR 7207 du CNRS Département Histoire de la Terre Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie France Keywords: Namachloris, middle ear, inner ear, Afrotheria, Chrysochloridae 2 Graphical abstract text The Palaeogene chrysochlorid Namachloris had small ossicles and a tensor tympani muscle. Its middle ear cavities did not intercommunicate. Like some other afrotherians, it had a secondary crus commune but no distinct canaliculus cochleae. Graphical Abstract Image 141x105mm (72 x 72 DPI) 3 Abstract Many living species of golden moles (Chrysochloridae) have greatly enlarged middle ear ossicles, believed to be used in the detection of ground vibrations through inertial bone conduction. Other unusual features of chrysochlorids include internally-coupled middle ear cavities and the loss of the tensor tympani muscle. Our understanding of the evolutionary history of these characteristics has been limited by the paucity of fossil evidence. In this paper, we describe for the first time the exquisitely-preserved middle and inner ears of Namachloris arenatans from the Palaeogene of Namibia, visualised using computed tomography, as well as ossicles attributed to this species. We compare the auditory region of this fossil golden mole, which evidently did not possess a hypertrophied malleus, to those of three extant species with similarly-sized ear ossicles, Amblysomus hottentotus, Calcochloris obtusirostris and Huetia leucorhinus.
    [Show full text]
  • Tenrecidae , Insectivora
    NovtautesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2889, pp. 1-45, figs. 1-13, 5 tables September 2, 1987 The Shrew Tenrecs of Madagascar: Systematic Revision and Holocene Distribution of Microgale (Tenrecidae, Insectivora) R. D. E. MACPHEE' ABSTRACT The shrew tenrecs of Madagascar-Microgale Revision permits, for the first time, an approx- and the allied nominal genera Leptogale, Para- imate idea of the true ranges and habitat prefer- microgale, and Nesogale-have never been for- ences of shrew tenrec species. Although the ma- mally revised. Examination of all relevant type jority of species appear to be restricted to the material reveals that only 10 of the 22 nominal comparatively moist and equable conditions ofthe species-group names ofshrew tenrecs deserve rec- eastern rain forest, several species occur in forest ognition. The large number of synonyms is prin- islands and other favorable habitat in the eastern cipally due to authors' repeated commission of part of the highlands, and two (M. pusilla and two substantial errors: (1) failing to recognize the brevicaudata) have occupied the dry, highly sea- juvenile status of many "adult" specimens used sonal western side of the island in recent times. as holotypes, and (2) failing to appreciate the Despite its morphological primitiveness, Micro- marked degree of within-group variation in these gale can be aptly described as adaptively resilient. insectivores. Analysis of a range of metric and Colonization of the highlands and the far west nonmetric traits further reveals that there are only presumably occurred by pioneering groups mov- three or four distinctively different morphological ing out from the eastern forest belt during times clusters of shrew tenrecs in the modern fauna, and ofclimatic amelioration and forest expansion; iso- that all species clusters can be comfortably accom- lation of these groups would have occurred when modated in one genus, Microgale.
    [Show full text]
  • Report to the Government of Liberia on Conservation, Management and Utilization of Wildlife Resources
    IUCN PUBLICATIONS NEW SERIES Supplementary Paper No 24 REPORT TO THE GOVERNMENT OF LIBERIA ON CONSERVATION, MANAGEMENT AND UTILIZATION OF WILDLIFE RESOURCES by KAI CURRY-LINDAHL 1948 International Union for Conservation of Nature and Natural Resources Morges, Switzerland 1969 IUCN PUBLICATIONS NEW SERIES Supplementary Paper No 24 REPORT TO THE GOVERNMENT OF LIBERIA ON CONSERVATION, MANAGEMENT AND UTILIZATION OF WILDLIFE RESOURCES by KAI CURRY-LINDAHL International Union for Conservation of Nature and Natural Resources Morges, Switzerland 1969 CONTENTS Introduction 1 Background of this Report 1 African Convention on Conservation of Nature and Natural Resources 2 Principles 2 Actual Conservation Legislation in Liberia 3 The natural setting of Liberia 4 Land use and wildlife 5 Forests 7 Savannas 11 Bushmeat production 12 Conservation and management of wildlife 15 Hunting legislation 15 National parks and nature reserves 20 Suggestions of areas for national parks and nature reserves 23 Mount Wutivi 23 Bokoma 23 Tiempo 23 Nimba Range 23 Cape Mount 24 Lofa region 24 Cestos region 24 Grand Gedeh region 25 Swamp and delta areas 25 Organization 26 Conclusions : a wildlife restoration plan 28 Cited and consulted literature 31 The International Union for Conservation of Nature and Natural Resources (IUCN) was founded in 1948 and has its headquarters in Morges, Switzerland; it is an independent international body whose membership comprises states, irrespective of their political and social systems, government departments and private institutions as well as international organisations. It represents those who are concerned at man's modification of the natural environment through the rapidity of urban and industrial development and the excessive exploitation of the earth's natural resources, upon which rest the foundations of his survival.
    [Show full text]
  • Comms GSN 16, 2015 Pickford Chrysochloridae BC,105-113
    Chrysochloridae (Mammalia) from the Lutetian (Middle Eocene) of Black Crow, Namibia Martin Pickford Sorbonne Universités (CR2P, UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie) case postale 38, 57 rue Cuvier, 75005 Paris. e-mail: < [email protected] > Abstract : The freshwater and carbonatitic limestones at Black Crow, Sperrgebiet, Namibia, have yielded an interesting mammalian and non-marine molluscan fauna of Lutetian age. Among the mammals found in 2007 were a primitive arsinoithere, a hyracoid, some creodonts and rodents, as well as a macroscelidid and a possible sloth-like animal (Xenarthra). Further work has led to the recovery of a few additional mammalian fossils, including the earliest known chrysochlorid which comprises the focus of the present study. A new genus and a new species are erected for this early chrysochlorid. Key Words : Chrysochloridae, Afrotheria, Eocene, Namibia To cite this paper: Pickford, M., 2015. Chrysochloridae (Mammalia) from the Lutetian (Middle Eocene) of Black Crow, Namibia. Co mmunications of the Geological Survey of Namibia , 16, 105-113. Submited in 2015. Introduction Lutetian continental deposits were Much of the limestone represents discovered at Black Crow, Sperrgebiet, airfall carbonatite tuff (Werfkopje, White Ring Namibia, in 2007 and published in 2008 and Plaquette Limestone in the Eocliff sector) (Pickford et al. 2008a, 2008b) (Fig. 1-3). The but the deposits with pedotubules represent fossiliferous deposits at Black Crow comprise reworked limestone, both clastic and freshwater limestones with abundant precipitated out of aqueous solution. pedotubules, suggesting accumulation in a The mammalian fauna from Black swampy setting.
    [Show full text]