First Analysis Mathematica International Conference
Total Page:16
File Type:pdf, Size:1020Kb
First Analysis Mathematica International Conference Conference Booklet Budapest, 2019 This conference gratefully acknowledges the support of • Akadémiai Kiadó (Publishing House of Hungarian Academy of Sciences), • Alfréd Rényi Institute of Mathematics, and • Hungarian Academy of Sciences. This booklet contains the list of participants and the list of abstracts, collected by the Alfréd Rényi Institute of Mathematics. If you prefer to remove your data from the list of participants, or list of abstracts, please contact us in email until August 13, 2019. 3 List of participants Teimuraz Akhobadze András Bíró Ivane Javakhishvili Tbilisi State Uni- Alfréd Rényi Institute of Mathematics versity Budapest, Hungary Tbilisi, Georgia [email protected] [email protected] Lynn Brandon Roman Akopyan Springer Nature Ural Federal University London, UK Ekaterinburg, Russia [email protected] Giacomo Cherubini Alfréd Rényi Institute of Mathematics Aleksandr Babenko Budapest, Hungary Ural Federal University [email protected] Ekaterinburg, Russia [email protected] Sergei Chobanyan Georgian Technical University Richárd Balka Tbilisi, Georgia Alfréd Rényi Institute of Mathematics [email protected] Budapest, Hungary [email protected] Ana Danelia Ivane Javakhishvili Tbilisi State Uni- Antal Balog versity Alfréd Rényi Institute of Mathematics Tbilisi, Georgia Budapest, Hungary [email protected] [email protected] Marina Deikalova Ural Federal University Imre Bárány Ekaterinburg, Russia Alfréd Rényi Institute of Mathematics [email protected] Budapest, Hungary [email protected] Borislav Draganov University of Sofia and Bulgarian Dávid Benkő Academy of Sciences Budapest, Hungary Sofia, Bulgaria [email protected] [email protected]fia.bg Elena Berdysheva Tamás Erdélyi University of Giessen Texas A&M University Giessen, Germany College Station, Texas, USA [email protected] [email protected] István Berkes Bálint Farkas Alfréd Rényi Institute of Mathematics University of Wuppertal Budapest, Hungary Wuppertal, Germany [email protected] [email protected] 4 Serhii Favorov Alexander Goncharov Karazin Kharkiv National University Bilkent University Kharkiv, Ukraine Ankara, Turkey [email protected] [email protected] Włodzimierz Fechner Dmitry Gorbachev Lodz University of Technology Tula State University Łódź, Poland Tula, Russia [email protected] [email protected] Żywilla Fechner Karlheinz Gröchenig Lodz University of Technology University of Vienna Łódź, Poland Vienna, Austria [email protected] [email protected] Bernhard Haak Hans G. Feichtinger Université Bordeaux 1 University of Vienna Talence, France Vienna, Austria [email protected] [email protected] Gergely Harcos Mikolaj Maksymilian Fraczyk Alfréd Rényi Institute of Mathematics Alfréd Rényi Institute of Mathematics Budapest, Hungary Budapest, Hungary [email protected] [email protected] Feliks Hayrapetyan Marcell Gaál Yerevan State University Alfréd Rényi Institute of Mathematics Yerevan, Armenia Budapest, Hungary [email protected] [email protected] Norbert Hegyvári Ivan Gadjev Alfréd Rényi Institute of Mathematics Sofia University St Kliment Ohridski Budapest, Hungary Sofia, Bulgaria [email protected] [email protected]fia.bg Ágota P. Horváth Dorin Ghisa Budapest University of Technology and York University Economics Toronto, Ontario, Canada Budapest, Hungary [email protected] [email protected] Polina Yu. Glazyrina Koba Ivanadze Ural Federal University Tbilisi State University Ekaterinburg, Russia Tbilisi, Georgia [email protected] [email protected] 5 Valerii I. Ivanov Sándor Kiss Tula State University Budapest University of Technology and Tula, Russia Economics [email protected] Budapest, Hungary [email protected] Yoritaka Iwata Kansai University Yurii Kolomoitsev Osaka, Japan University of Lübeck [email protected] Lübeck, Germany [email protected] Pankaj Jain Vilmos Komornik South Asian University University of Strasbourg New Delhi, India Strasbourg, France [email protected] [email protected] Philippe Jaming Sergey V. Konyagin Université Bordeaux 1 Steklov Mathematical Institute Bordeaux, France Moscow, Russia [email protected] [email protected] Sergei Kalmykov Risto Korhonen Shanghai Jiao Tong University University of Eastern Finland Shanghai, China Joensuu, Finland [email protected] risto.korhonen@uef.fi Jun Kawabe András Kroó Shinshu University Alfréd Rényi Institute of Mathematics Nagano, Japan Budapest, Hungary [email protected] [email protected] Tamás Keleti Alexander Kuleshov Eötvös Loránd University Lomonosov Moscow State University Budapest, Hungary Moscow, Russia [email protected] [email protected] Kyung Soo Kim Dávid Kunszenti-Kovács Kyungnam University Eötvös Loránd University Changwon, Republic of Korea Budapest, Hungary [email protected] [email protected] Young-Ho Kim Niko P. J. Laaksonen Changwon National University Alfréd Rényi Institute of Mathematics Changwon, Republic of Korea Budapest, Hungary [email protected] [email protected] 6 Miklós Laczkovich Béla Nagy Eötvös Loránd University Hungarian Academy of Sciences and Budapest, Hungary University of Szeged [email protected] Szeged, Hungary [email protected] Alexey Lukashov Moscow Institute of Physics and Tech- Zsuzsanna Nagy-Csiha nology University of Pécs Moscow, Russia Pécs, Hungary [email protected] [email protected] Kadda Mazouz Gergő Nemes University of Ibn Khaldun Alfréd Rényi Institute of Mathematics Tiaret, Algeria Budapest, Hungary [email protected] [email protected] Péter Maga Zoltán Németh Alfréd Rényi Institute of Mathematics University of Szeged Budapest, Hungary Szeged, Hungary [email protected] [email protected] Kishore B. Marathe City University of NY Burçin Oktay Yönet New York, USA Balıkesir University [email protected] Balıkesir, Turkey [email protected] Máté Matolcsi Budapest University of Technology Walter A. Ortiz Budapest, Hungary Universitat Autónoma de Barcelona [email protected] Barcelona, Spain [email protected] Radu Miculescu Transilvania University of Brasov János Pintz Brasov, Romania Alfréd Rényi Institute of Mathematics [email protected] Budapest, Hungary [email protected] Vazgen Mikayelyan Yerevan State University Szilárd Gy. Révész Yerevan, Armenia Alfréd Rényi Institute of Mathematics [email protected] Budapest, Hungary [email protected] Givi Nadibaidze Ivane Javakhishvili Tbilisi State Uni- Imre Z. Ruzsa versity Alfréd Rényi Institute of Mathematics Tbilisi, Georgia Budapest, Hungary [email protected] [email protected] 7 Konstantin S. Ryutin Moscow State University Vladimir D. Stepanov Moscow, Russia Steklov Mathematical Institute of RAS, [email protected] Moscow ; Computing Center of Far- Eastern Branch of RAS, Khabarovsk, Russia Csaba Sándor Moscow, Russia Budapest University of Technology and [email protected] Economics Budapest, Hungary [email protected] Vaja Tarieladze Muskhelishvili Institute of Computa- tional Mathematics of the Georgian Klaus Schiefermayr Technical University Georgia University of Applied Sciences Upper Tbilisi, Georgia Austria [email protected] Wels, Austria [email protected] Sergey Tikhonov Catalan Institution for Research and Olivier Sète Advanced Studies TU Berlin Barcelona, Spain Berlin, Germany [email protected] [email protected] Hiroshige Shiga Alexander Tyulenev Kyoto Sangyo University Steklov Mathematical Institute Kyoto, Japan Moscow, Russia [email protected] [email protected] Yoshihiko Shinomiya Rumen Uluchev Shizuoka University Sofia University St. Kliment Ohridski Shizuoka, Japan Sofia, Bulgaria [email protected] [email protected]fia.bg Iurii Shteinikov Brett Wick SRISA/NIISI RAS Washington University in Saint Louis Moscow, Russia St. Louis, Missouri, USA [email protected] [email protected] Emel Yavuz Ilona Simon Istanbul Kültür University University of Pécs Istanbul, Turkey Pécs, Hungary [email protected] [email protected] László Zsidó Aleksei P. Solodov Università di Roma “Tor Vergata” Lomonosov Moscow State University Rome, Italy Moscow, Russia [email protected] [email protected] 8 On the generalized Cesáro summability of trigonometric Fourier series Teimuraz Akhobadze In [Akh00] is introduced the notion of BV (p(n) " p; ') class of functions of bounded variation. If '(n) = 2n then this class coincides with the class BV (p(n) " p), introduced by Kita and Yoneda [KY90]. In [Akh02] the notion of the class of functions BΛ(p(n) " 1;') is introduced. There are studied classes BΛ(p(n) " 1;') and, in particular, it is proved that this class is wider then the class of functions BV (p(n) " 1;') even in the case of space of continuous functions. It is known that the order of the n-th coefficients of trigonometric Fourier series of a function of bounded variation is O(1=n). Siddiqi [Sid72] proved that the order of the Fourier 1=p coefficients of functions in BVp (p > 1) is O(1=n ). On the other hand it’s known (see P [Zyg02, Chapter III, (1.22)]) that if a number series uk is summable by the method α (C; α), α > −1, then un = o(n ). This means that for the summability by method (C; −α), α > 0, of Fourier series of the class BVp it is necessary that αp < 1. So, for the classes BV (p(n) " 1;') trigonometric Fourier series can not be