Skills Summary

Total Page:16

File Type:pdf, Size:1020Kb

Skills Summary HVAC&R MODULE Skills 120 FLAMMABLE Workshop LOWER TOXICITY PROUDLY SPONSORED BY AIRAH REFRIGERANTS This Skills Workshop is taken from the Institute of Refrigeration’s 2018 Safety Code of Practice. The object of this code is to define minimum Skills summary requirements for safety in the design, construction and installation, ■ What? commissioning, inspection and maintenance of vapour compression Properties of flammable refrigerants as refrigerating systems utilising flammable, lower toxicity refrigerants. listed in the Institute of Refrigeration’s 2018 Safety Code of Practice. These are classified as Group A2L, A2 or A3 refrigerants. ■ Who? This section of the code deals with the properties of these refrigerants. Relevant for every person with responsibility through ownership, The code of practice is intended to apply within the United Kingdom. consultancy, design, construction, installation, commissioning, However, the information is of general use in Australia as well. Where decommissioning, operation, maintenance, appropriate, relevant Australian standards have been noted next to the inspection, repair, modification or testing of a compression refrigeration system. British standards. (LFL) and the Upper Flammability Limit (UFL) in Moisture solubility Relevant properties air and the Auto-Ignition Temperature (AIT). The Moisture is sparingly soluble in most refrigerants occupational exposure limit (OEL) indicates the of refrigerants at ambient temperature. The solubility decreases concentration of refrigerant in the atmosphere that as the temperature reduces and excess water Physical properties is allowable for continuous exposure during an can lead to the formation of ice or hydrate at the eight-hour working day. The PL for A2L, A2 and A3 Table 1 on page 17 shows some of the important expansion device, which could impair or stop the refrigerants is based on approximately 20% of the physical properties for the most common operation of the system. Moisture also increases LFL. Refrigerant detection devices should be set to flammable lower toxicity refrigerants. The normal the possibility of chemical reactions between the warn of concentrations of A2L, A2 or A3 refrigerants boiling point indicates the type of application for refrigerant, the oil and the system components and which approach the PL and the OEL. which the refrigerant should be used. The Practical in many refrigeration applications acids may form Limit (PL) of the refrigerant indicates the allowable The Figure below shows the pressure temperature which could damage the windings of hermetic or refrigerant charge related to the smallest human relationship of a selection of different refrigerants semi-hermetic compressors. Due to the chemical occupied space as defined in BS EN 378-1:2016. including Propane which is an A3 Flammable make-up of hydrocarbons, this is unlikely to occur Reference is made to the Lower Flammability Limit Lower Toxicity Refrigerant covered by this Code. with A3 refrigerants, but still applies to A2L and A2 refrigerants. Figure 1. Pressure temperature relationship of selected refrigerants 1000 Adsorbent desiccants (molecular sieves) which preferentially adsorb water in the presence of many refrigerants are generally applicable to most A2L, 100 A2 and A3 refrigerants provided the appropriate grades of adsorbent desiccant are selected. Conventional desiccants, such as activated alumina, ) 10 will adsorb moisture in the presence of most A2L, A2 and A3 refrigerants. However such desiccants ar(A) do not retain moisture at higher temperatures as 1 Atmospheric Pressure well as the molecular sieve materials. Moisture removed during operation of the refrigerating CO2 system may therefore be returned to the system Pressure (b 0.1 R-32 when it is switched off and warms up. It is strongly recommended that drier cores (or beads etc) Ammonia specifically designated for the refrigerant are used. Propane 0.01 R-134a Lubricants In general, blends containing A2L or A2 refrigerants are not soluble in mineral or alkyl-benzene oils. 0.001 Special synthetic lubricants are recommended. -120 -100 -80-60 -40-12 0 20 40 60 80 100120 140 The most common type of synthetic lubricant for Temperature (°C) use with A2L or A2 refrigerants is the polyolester April 2019 | www.airah.org.au/nation | HVAC&R Nation | 15 HVAC&R Skills Workshop oil (POE) (although the automotive industry Chemical properties and Excursions to concentrations above the commonly uses polyalkylene glycol (PAG) oils for potential hazards Occupational Exposure Limit values quoted in automotive air conditioning). It is a disadvantage Table 1 are permitted as defined by the short-term A risk assessment shall be carried out by a of these lubricants that they have a much greater exposure limit (STEL) where listed by the HSE or competent person prior to commencing any work. affinity for water than traditional mineral oils to other short-term limits as advised by refrigerant The following items should be considered – note the extent that they will absorb moisture from the manufacturers after risk assessment. atmosphere. They therefore have to be kept from this list is not exhaustive and a site specific risk assessment should be carried out. contact with the atmosphere as much as possible. The vapour of most refrigerants is colourless, odourless and denser than air. If inadvertently PAG oils have the additional disadvantage that they Reactivity are intolerant of trace quantities of chlorine. released to atmosphere it will initially collect at low A2L, A2 or A3 refrigerants do not react with steel, level, particularly in pits, trenches and basements. In general, pure A3 refrigerants can be used with copper, aluminium and brass in acceptably dry Suitable temporary forced ventilation which does a wider range of lubricants, particularly mineral refrigerating systems. Alloys containing more not provide a source of ignition shall be provided and alkyl-benzene oils. However, solubility than 2% magnesium will react with fluorine and to disperse the vapour rapidly. tends to be increased with A3 refrigerants chlorine atoms in A2L and A2 blends and so so it may be necessary to select a lubricant should only be used with pure A3 refrigerants. In Care shall be exercised on entering a pit, trench with a higher viscosity grade. Polyalphaolefin the presence of moisture, zinc and galvanised steel or basement where there is a possibility of a high (PAO) and polyalkylene glycol (PAG) are also are particularly susceptible to corrosive attack. concentration of refrigerant vapour. acceptable for use where approved by the compressor manufacturer. POE oils are also Thermal decomposition Fatal accidents involving refrigerants can occur acceptable but do exhibit an even higher A3 refrigerants are subject to thermal either as a result of asphyxiation or ignition. solubility with A3 refrigerants. It is a disadvantage decomposition at temperatures of the order of of these lubricants that they have a greater 450°C, and A2L and A2 refrigerants at temperatures Direct contact affinity for water than ordinary mineral oils and in excess of 250°C. In the presence of oil and other Where liquid refrigerants having boiling points therefore have to be kept from contact with contaminants they are subject to reaction and below zero Celsius at atmospheric pressure come the atmosphere as much as possible. decomposition at lower temperatures, particularly into contact with the skin or eyes, evaporation if impurities such as moisture are present in the may cause freezing of the skin or eye fluids and Care should be taken that the correct lubricant is system. Temperatures in refrigerating systems freeze burns may occur. Clothing saturated with selected for the application, for the compressor should be limited to about 135°C. Many A2L, A2 or liquid refrigerant may freeze to the skin. Higher and for the refrigerant used. Seek advice from the A3 refrigerants have low indices of compression, boiling point refrigerants have solvent actions compressor manufacturer if there is any doubt. which tend to produce low compressor discharge that can cause defatting and cracking of the skin. temperatures, although some can have higher Goggles, suitable temperature rated gloves and Materials compatibility discharge temperatures e.g., R32. other suitable clothing shall be worn whenever It is important to consider the compatibility of the there is a risk of exposure to refrigerant liquid. refrigerant and the compressor oils with system Since A3 refrigerants lack chlorine and fluorine materials such as plastics, elastomers, metals, etc. atoms there is no possibility of acid formation in the presence of moisture and therefore Potential sources of Virtually all common elastomer and plastic salt formation and subsequent blockage in refrigerant leakage materials used as ‘O’ rings, valve seats, seals appliances is unlikely. Thermal decomposition of The refrigerating system contains refrigerant and gaskets are compatible with A2L, A2 or A3 A3 refrigerants external to the system does not in both liquid and vapour states. It is possible refrigerants. Materials that are not compatible and produce harmful decomposition products, whilst under abnormal conditions for liquid refrigerant should not be used in HC systems include EPDM, decomposition of fluorinated refrigerants can to enter the compressor, for example by way natural rubbers and silicone rubbers. It should be produce toxic substances such as hydrofluoric acid of faulty valves or by overcharge of refrigerant noted that chloroprene
Recommended publications
  • Proposed Rule: Protection of Stratospheric Ozone
    The EPA Administrator, Gina McCarthy, signed the following proposed rule on October 15, 2015, and EPA is submitting it for publication in the Federal Register (FR). While we have taken steps to ensure the accuracy of this Internet version of the rule, it is not the official version of the rule for purposes of public comment. Please refer to the official version in a forthcoming FR publication, which will appear on the Government Printing Office's FDsys website (http://www.gpo.gov/fdsys/search/home.action) and on Regulations.gov (http://www.regulations.gov) in Docket No. EPA-HQ-OAR-2015-0453. Once the official version of this document is published in the FR, this version will be removed from the Internet and replaced with a link to the official version. This document is a prepublication version, signed by the EPA Administrator, Gina McCarthy, on October 15, 2015. We have taken steps to ensure the accuracy of this version, but it is not the official version. 6560-50-P ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 82 [EPA-HQ-OAR-2015-0453; FRL-9933-48-OAR] RIN: 2060-AS51 Protection of Stratospheric Ozone: Update to the Refrigerant Management Requirements under the Clean Air Act AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: The Clean Air Act prohibits the knowing release of ozone-depleting and substitute refrigerants during the course of maintaining, servicing, repairing, or disposing of appliances or industrial process refrigeration. The existing regulations require that persons servicing or disposing of air-conditioning and refrigeration equipment observe certain service practices that reduce emissions of ozone-depleting refrigerant.
    [Show full text]
  • Commissioning of a Refrigerant Test Unit and Assessing the Performance of Refrigerant Blends
    COMMISSIONING OF A REFRIGERANT TEST UNIT AND ASSESSING THE PERFORMANCE OF REFRIGERANT BLENDS Ndlovu Phakamile B. Eng. (Hons) NUST Zimbabwe Submitted in fulfilment of the Academic Requirements for the Awards of the Master of Science Degree in Engineering at the School of Chemical Engineering, University of KwaZulu-Natal. December 2017 Supervisor: Prof Paramespri Naidoo. Co-supervisors: Prof Deresh Ramjugernath, Prof J.D Raal and Dr Caleb Narasigadu As the candidate’s supervisor I agree to the submission of this thesis: Prof. P. Naidoo Date Declaration I, Ndlovu Phakamile, student number 216074625 declare that: (i) The research reported in this dissertation, except where otherwise indicated or acknowledged, is my original work. (ii) This dissertation has not been submitted in full or in part for any degree or examination to any other university. (iii) This dissertation does not contain other persons’ data, pictures, graphs or other information unless specifically acknowledged as being sourced from other persons. (iv) This dissertation does not contain other persons’ writing unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a) Their words have been rewritten but the general information attributed to them has been referenced. b) Where their exact words have been used, their writing has been placed inside quotation marks, and referenced. (v) This dissertation is primarily a collection of material, prepared by myself, published as journal articles or presented as a poster and oral presentations at conferences. In some cases, additional material has been included. Signed: Date: i Acknowledgements I would like to thank God, the one “in whom we live and move and have our being” Acts 17 vs 28, who made it possible for me accomplish this feat.
    [Show full text]
  • Accounting Tool to Support Federal Reporting of Hydrofluorocarbon Emissions: SUPPORTING DOCUMENTATION
    Accounting Tool to Support Federal Reporting of Hydrofluorocarbon Emissions: SUPPORTING DOCUMENTATION P REPARED FOR : Stratospheric Protection Division Office of Air and Radiation U.S. Environmental Protection Agency Washington, D.C. 20460 P R E P A R E D B Y : ICF 1725 Eye Street NW Washington, DC 20006 O C T O B E R 2 0 1 6 Accounting Tool to Support Federal Reporting of HFC Emissions Contents Contents ......................................................................................................................................................... i 1 Introduction .......................................................................................................................................... 2 2 HFC Emissions Accounting Tool Overview ............................................................................................ 5 2.1 Summary of Capabilities and Scope .............................................................................................. 5 3 HFC Emission Estimation Methodologies ............................................................................................. 8 3.1 Existing CEQ Guidance Methodologies ....................................................................................... 10 3.1.1 Federal Supply System Transaction Approach (Default) Approach .................................... 10 3.1.2 Material Balance Approach ................................................................................................. 11 3.1.3 Simplified Material Balance Approach ...............................................................................
    [Show full text]
  • Note: This Is a Courtesy Copy of This Rule Proposal. the Official Version Will Be Published in the June 21, 2021, New Jersey Register
    NOTE: THIS IS A COURTESY COPY OF THIS RULE PROPOSAL. THE OFFICIAL VERSION WILL BE PUBLISHED IN THE JUNE 21, 2021, NEW JERSEY REGISTER. SHOULD THERE BE ANY DISCREPANCIES BETWEEN THIS TEXT AND THE OFFICIAL VERSION OF THE PROPOSAL, THE OFFICIAL VERSION WILL GOVERN. ENVIRONMENTAL PROTECTION AIR QUALITY, ENERGY, AND SUSTAINABILITY Greenhouse Gas Monitoring and Reporting Proposed New Rules: N.J.A.C. 7:27E Proposed Amendments: N.J.A.C. 7:27-21.2, 21.3, and 21.5; and 7:27A-3.2, 3.5, and 3.10 Authorized By: Shawn M. LaTourette, Acting Commissioner, Department of Environmental Protection. Authority: N.J.S.A. 13:1B-3, 13:1D-9, 26:2C-1 et seq., and 26:2C-37 et seq., specifically, 26:2C- 41. Calendar Reference: See Summary below for explanation of exception to calendar requirement. DEP Docket Number: 06-21-05. Proposal Number: PRN 2021-058. A public hearing concerning this notice of proposal will be held on July 22, 2021, at 1:00 P.M. The public hearing will be conducted virtually through the Department of Environmental Protection’s (Department) video conferencing software, Microsoft Teams. A link to the virtual public hearing with telephone call-in option will be provided on the Department’s website at https://www.nj.gov/dep/rules/notices.html. Submit comments by August 20, 2021, electronically at http://www.nj.gov/dep/rules/comments. Each comment should be identified by the applicable N.J.A.C. citation, with the commenter’s name and affiliation following the comment. The 1 NOTE: THIS IS A COURTESY COPY OF THIS RULE PROPOSAL.
    [Show full text]
  • Denmark: Low GWP Alternatives to Hfcs in Refrigeration
    Low GWP Alternatives to HFCs in Refrigeration Environmental Projekt no. 1425 Titel: Redaktion: Low GWP Alternatives to HFCs in Refrigeration Per Henrik Pedersen Danish Technological Institute Udgiver: Foto: Miljøstyrelsen Strandgade 29 1401 København K Illustration: www.mst.dk År: Kort: 2012 ISBN nr.: 978-87-92903-15-0 Ansvarsfraskrivelse: Miljøstyrelsen vil, når lejligheden gives, offentliggøre rapporter og indlæg vedrørende forsknings- og udviklingsprojekter inden for miljøsektoren, finansieret af Miljøstyrelsens undersøgelsesbevilling. Det skal bemærkes, at en sådan offentliggørelse ikke nødvendigvis betyder, at det pågældende indlæg giver udtryk for Miljøstyrelsens synspunkter. Offentliggørelsen betyder imidlertid, at Miljøstyrelsen finder, at indholdet udgør et væsentligt indlæg i debatten omkring den danske miljøpolitik. Må citeres med kildeangivelse. 3 Contents 1. Introduction ....................................................................................................... 6 1.1 The greenhouse effect and potent greenhouse gases ........................................................... 6 1.2 Participants .............................................................................................................................7 2. Danish National Initiatives ................................................................................. 8 3. The use of HFCs and substitutes in the refrigeration industry ............................ 11 3.1 Domestic refrigerators and freezers ....................................................................................
    [Show full text]
  • +4000044- IT-EN-ES 1-3 Refrigerant Scenario NERO.Indd
    Knowledge Center White paper Refrigerant scenario Rules and trends in the near future Concerns on environmental issues such as the greenhouse effect are driving governments to create new rules to control emissions . In the coming years, significant actions are planned, and refrigerants will be particularly affected . Information is continuously being updated and the specificities of regulations create many questions among manufacturers and users: How do the rules affect the most common refrigerants? What are the trends? Which is the best refrigerant for each application? CAREL can help you answer these questions and find solutions that are compatible with the new regulations worldwide . Do not hesitate to contact us for further information about the contents of this paper: Knowledge Center CAREL Industries [email protected] (+39) 0499 716611 Index Rules and regulations . .. 5 Refrigerant history overview . 7 What are the rules in different parts of the world? . 8 Is GWP the best indicator of the environmental impact of a refrigerant? . 13 How do the rules affect the most common refrigerants? . 14 Which is the best refrigerant? . 16 Trends in HVAC/R applications . 17 How will the new regulations affect the refrigerant applications market? . 19 What are the trends?. 20 What will happen next? .. 24 Annex . 25 Definition of terms CFC (Chlorofluorocarbon): substance which contains fluorine, carbon and chlorine . They are considered the “first generation” of refrigerants . CFC refrigerants have ODP and are greenhouse gases (high GWP) . E .g . R-12 . Glide: temperature difference between the starting and ending temperature of a refrigerant phase change . It occurs when a refrigerant is a blend of components with different evaporation/condensation temperatures at the same pressure .
    [Show full text]
  • REFRIGERATION & AIR CONDITIONING CFC and HCFC
    Refrigeration.leaflet 19/12/00 12:45 pm Page i REFRIGERATION & AIR CONDITIONING CFC and HCFC Phase Out: Advice on Alternatives and Guidelines for Users Refrigeration.leaflet 19/12/00 12:45 pm Page ii This leaflet has been produced by DETR/DTI to provide guidance to industry on the likely consequences of the new EC Regulation. It should not be relied upon as a definitive statement of the law and is not a substitute for legal advice. Interpretation of the law is a matter for the courts. DETR and DTI accept no liability for any loss resulting from reliance on this document. Refrigeration.leaflet 19/12/00 12:45 pm Page 1 Contents Aim of this Guide.......................................................2 Summary of the new EC Regulation ..........................3 Impact of the new EC Regulation on refrigeration.......4 Which refrigerants are affected?.................................7 Applications of CFC and HCFC refrigerants ................8 How should you respond to ODS phase out?............10 Response for Category 1 users.................................11 Response for Category 2 users.................................12 Step 1 – Equipment identification ............................14 Step 2 – Issues to consider......................................15 Step 3 – The alternative approaches ........................19 Step 4 – Implementation..........................................23 Useful information ...................................................25 Appendix A – Refrigerant names..............................27 Glossary of terms CFC chlorofluorocarbon ODS ozone depleting substances HCFC hydrochlorofluorocarbon ODP ozone depletion potential HFC hydrofluorocarbon GWP global warming potential HC hydrocarbon 1 Refrigeration.leaflet 19/12/00 12:45 pm Page 2 Aim of this Guide This Guide provides details of how the new EC Regulation 2037/2000 on ozone depleting substances (ODS) will affect manufacture and use of refrigeration and air-conditioning equipment.
    [Show full text]
  • Instructions for Generating and Implementing Look-Up Tables with Refrigerant Thermophysical Properties in EVAP-COND Ver
    December 4, 2020 Instructions for generating and implementing look-up tables with refrigerant thermophysical properties in EVAP-COND Ver. 5.0 EVAP-COND uses refrigerant property look-up tables to facilitate fast simulations. The tables provide all thermodynamic and transport properties. The look-up scheme includes eight different property routines to retrieve the desired state or transport property depending on the properties identifying the refrigerant's thermodynamic state. The tables are based on pressure-enthalpy coordinates and can cover the supercritical region for high-pressure refrigerants. The tables for 23 refrigerants included in the EVAP-COND installation package were generated using TableGen2.exe, a stand-alone program, which is based on property routines contained in REFPROP (Lemmon et al., 2018). EVAP-COND uses separate look-up tables with different low- and high-pressure limits for EVAP (evaporator model) and COND (condenser model). Except for R744 (carbon dioxide), the evaporator property look-up tables cover the -32 °C to +28 °C (-25.6 °F to 84.2 °F) range of bubble-point temperatures. For condenser simulations, the temperature range is approximately 10 °C to 70 °C (50 °F to 158 °F) for all fluids except R507A (10 °C to 68.5 °C; 50 °F to 155.3 °F) and R32, R404A, R410A and R744, for which the table extends to the supercritical region. If EVAP or COND calls for a refrigerant property that is outside the bounds of the look-up table, this property is calculated by REFPROP routines. To expand the list of refrigerants available in EVAP-COND, you need to generate separate look-up tables for EVAP and COND and copy them to four EVAP-COND folders.
    [Show full text]
  • List of Refrigerants
    Refrigerant Table: Explanation and Glossary of Terms A reference list of refrigerants which is intended to provide an indication of the basic characteristics, properties and applications for a variety of refrigerants along with some replacement options was prepared upon the recommendation of HRAI’s Task Team on the Future of Refrigerants. This list is intended to assist contractors as a convenient reference when selecting suitable replacement/substitute refrigerants for those refrigerants (CFC and any HCFC) which are being phased out. While refrigerant manufacturers may indicate some products are suitable for retrofit applications, the contractor will need to consider the application in order to determine the extent of system modifications that may be required to accommodate the replacement refrigerant. Currently, one must verify with the Original Equipment Manufacturer (OEM) to determine compatibility of alternative refrigerants with the equipment, or have a Professional Engineer sign off. Unless otherwise specified, few if any replacement refrigerants in the table are certified as a direct drop‐in replacement, in fact most are certified for new equipment only and are not suitable for retrofit applications. Contractors would still have to determine which products are suitable for their particular application, if equipment replacement or retrofit options exist, which system modifications may be required and choose accordingly. Depending on the age of the existing equipment and the extent of system modifications required to accommodate an alternate refrigerant, it may prove to be more cost effective in the long run to replace equipment outright. As the phase down of certain refrigerants causes them to become scarcer, decreasing availability and increasing cost can be expected to result in the change‐out of entire systems to more energy efficient equipment and environmentally friendly refrigerants.
    [Show full text]
  • December 1, 2016 / Rules and Regulations
    86778 Federal Register / Vol. 81, No. 231 / Thursday, December 1, 2016 / Rules and Regulations ENVIRONMENTAL PROTECTION from 8:30 a.m. to 4:30 p.m., Monday 3. Unacceptable Listing of Certain AGENCY through Friday, excluding legal Flammable Refrigerants for Retrofits in holidays. The telephone number for the Unitary Split AC Systems and Heat 40 CFR Part 82 Public Reading Room is (202) 566–1744, Pumps 4. Unacceptable Listing of Propylene and [EPA–HQ–OAR–2015–0663; FRL–9952–18– and the telephone number for the Air R-443A in New Residential and Light OAR] and Radiation Docket is (202) 566–1742. Commercial AC and Heat Pumps, Cold FOR FURTHER INFORMATION CONTACT: Storage Warehouses, and Centrifugal and RIN 2060–AS80 Chenise Farquharson, Stratospheric Positive Displacement Chillers Protection Division, Office of 5. Change of Listing Status for Certain HFC Protection of Stratospheric Ozone: Refrigerants for New Centrifugal Chillers New Listings of Substitutes; Changes Atmospheric Programs (Mail Code 6205T), Environmental Protection and for New Positive Displacement of Listing Status; and Reinterpretation Chillers of Unacceptability for Closed Cell Agency, 1200 Pennsylvania Ave. NW., 6. Change of Listing Status for Certain HFC Foam Products Under the Significant Washington, DC 20460; telephone Refrigerants for New Cold Storage New Alternatives Policy Program; and number: 202–564–7768; email address: Warehouses Revision of Clean Air Act Section 608 [email protected]. Notices 7. Change of Listing Status for Certain HFC Venting Prohibition for Propane and rulemakings under EPA’s Refrigerants for New Retail Food Significant New Alternatives Policy Refrigeration (Refrigerated Food AGENCY: Environmental Protection program are available on EPA’s Processing and Dispensing Equipment) Agency (EPA).
    [Show full text]
  • Refrigerants-Classification, Properties & Application
    properties Classification Refrigerant Refrigerants-Classification, Properties & Application Definition of refrigerant its classification- primary refrigerant, secondary refrigerants, History of refrigerants, Designation and classification of refrigerants, Properties of refrigerants – thermodynamic properties, chemical properties and physical properties, Refrigerants in use after 2000, Ozone layer depletion and global warming potential of CHC refrigerants, Introduction to eco-friendly refrigerants. Definition of Refrigerant and its Classification The working substance or heat transferring medium in a refrigeration system is called refrigerant. It absorbs heat from the sink at the low temperature and rejects to a source at the higher temperature. In domestic refrigerator, refrigerant absorbs heat in the evaporator and rejects heat to the atmosphere in the condenser. The refrigerant changes from liquid phase to vapour phase in the process of absorbing the heat and condenses again to liquid while rejecting the heat. The ideal refrigerant would be one that could reject all the heat it is capable of absorbing. History of refrigerants The natural ice and mixtures of ice and salt were the first refrigerants used by human beings to produce cold. Latter either, ammonia, sulphur dioxide, methyl chloride, ethyl chloride, and carbon dioxide were used as the refrigerants. Most of these refrigerants were discarded for safety reasons and for lack of thermal stability. In 1901—30, hydro-carbon compounds like methane, ethane etc. were used as a refrigerants. However, hydro-carbons were found extremely inflammable. In 1930s, a great break through occurred. Fluorinated hydro-carbons or freons were developed. These are derived from methane, ethane etc. are called F11, F12, F22 etc. Refrigerants are classified according the manner of absorption heat from the substance to be refrigerated.
    [Show full text]
  • Environmental Protection Agency 40 CFR Part 82
    This document is a prepublication version, signed by Administrator Gina McCarthy on 9/26/2016. We have taken steps to ensure the accuracy of this version, but it is not the official version. The EPA Administrator, Gina McCarthy, signed the following document on 9/26/2016, and the Agency is submitting it for publication in the Federal Register (FR). While we have taken steps to ensure the accuracy of this Internet version of the document, it is not the official version. Please refer to the official version in a forthcoming FR publication, which will appear on the Government Printing Office's FDSys website (http://fdsys.gpo.gov/fdsys/search/home.action) and on Regulations.gov (www.regulations.gov) in Docket No. EPA-HQ-OAR-2015-0663. Once the official version of this document is published in the FR, this version will be removed from the Internet and replaced with a link to the official version. 6560-50-P ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 82 [EPA-HQ-OAR-2015-0663; FRL-9952-18-OAR] RIN 2060-AS80 Protection of Stratospheric Ozone: New Listings of Substitutes; Changes of Listing Status; and Reinterpretation of Unacceptability for Closed Cell Foam Products under the Significant New Alternatives Policy Program; and Revision of Clean Air Act Section 608 Venting Prohibition for Propane AGENCY: Environmental Protection Agency (EPA). ACTION: Final Rule. SUMMARY: Pursuant to the U.S. Environmental Protection Agency’s (EPA) Significant New Alternatives Policy program, this action lists certain substances as acceptable, subject to use conditions; lists several substances as unacceptable; and changes the listing status for certain substances from acceptable to acceptable, subject to narrowed use limits, or to unacceptable.
    [Show full text]