Hologenome Analysis of Two Marine Sponges with Different Microbiomes

Total Page:16

File Type:pdf, Size:1020Kb

Hologenome Analysis of Two Marine Sponges with Different Microbiomes Ryu et al. BMC Genomics (2016) 17:158 DOI 10.1186/s12864-016-2501-0 RESEARCH ARTICLE Open Access Hologenome analysis of two marine sponges with different microbiomes Taewoo Ryu1,2,12*, Loqmane Seridi1,2, Lucas Moitinho-Silva3,MatthewOates4,YiJinLiew2,5, Charalampos Mavromatis1,2, Xiaolei Wang6,7, Annika Haywood2, Feras F. Lafi2,8, Marija Kupresanin1,2, Rachid Sougrat9, Majed A. Alzahrani6,7, Emily Giles2,YanalGhosheh1,2, Celia Schunter1,2, Sebastian Baumgarten2,5,MichaelL.Berumen2,5,XinGao6,7, Manuel Aranda2,5,SylvainForet10, Julian Gough4, Christian R. Voolstra2,5, Ute Hentschel11 and Timothy Ravasi1,2* Abstract Background: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria.Onthemicrobialside, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses. Keywords: Sponge, Stylissa carteri, Xestospongia testudinaria, Innate immune system, Host, Microbial symbionts, Hologenome Background tropical reefs to the cold deep sea and are even present in Microbial symbionts are being increasingly recognised as freshwater lakes and streams. As sessile filter feeders, they deeply integral components of multicellular organisms pump many thousands liters of water per day through the that affect core host functions such as development, im- aquiferous canal system that is embedded within the munity, nutrition, and reproduction [1]. The holobiont sponge body and are constantly exposed to a plethora of (synonym with “metaorganism”, and defined as the host microorganisms from the environment [5]. Many species organism and its collective microbial community) [2] is are colonised by dense and diverse microbial consortia thus considered a biological unit of natural selection that are contained extracellularly within the mesohyl (the “hologenome theory”) [3]. However, the molecular matrix (“high microbial abundance” (HMA)), while other mechanisms (e.g., immune system evasion and toler- species are nearly devoid of microorganisms (“low micro- ance) that have resulted in these symbiotic partnerships bial abundance” (LMA)) [6–8]. are poorly understood. To investigate factors involved in sponge-microbe inter- Sponges (Porifera) represent one of the oldest, still ex- actions, we herein sequenced and analysed hologenome tant animal phyla. Fossil evidence dating back 580 million data including genome, transcriptome, and metatranscrip- years ago shows their existence in the Precambrian long tome of S. carteri (an LMA sponge and hereafter referred before the radiation of all other animal phyla [4]. Sponges to as “SC”)andX. testudinaria (an HMA sponge and are globally distributed in all aquatic habitats from warm hereafter referred to as “XT”) (Fig. 1, Additional file 1 and Additional file 2). These two sponges were collected from * Correspondence: TaewooRyu16@apcc21.org; timothy.ravasi@kaust.edu.sa the same habitat, which ensured systematic comparison 1KAUST Environmental Epigenetic Program (KEEP), King Abdullah University by minimizing environmental effect such as different of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia planktons and temperature. SC is the first species in the 2Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, order Halichondrida to have its genome sequenced while Kingdom of Saudi Arabia XT (order Haplosclerida) is the first HMA sponge to have Full list of author information is available at the end of the article © 2016 Ryu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-hmx9j75dpgpw8 Ryu et al. BMC Genomics (2016) 17:158 Page 2 of 11 Fig. 1 Sponge species. Underwater images of Stylissa carteri (a) and Xestospongia testudinaria (b) taken by Michael L. Berumen its genome sequenced [8]. Thus, our work provides a immunity,”“antimicrobial peptides,” and “antibacterial”) unique and valuable resource for future studies. in functional annotations of the SUPERFAMILY data- base [13] (Fig. 2a and Additional file 6). We also in- Results and discussion cluded Amphimedon queenslandica (hereafter referred Genome assembly and gene annotation to as “AQ”) in this analysis because its genome has been Our assemblies of the SC and XT genomes yielded stably annotated [9] and also because its status with re- 97,497 and 97,640 scaffolds with base-level coverages of spect to microbial load is well known (LMA, Sandie 109 X and 59 X, respectively (Additional file 3). The esti- Degnan, personal communication). Furthermore, overall mated genome sizes obtained from our assemblies were gene contents of AQ are comparable to our studied comparable to experimentally determined genome sizes sponges: among 30,060 gene models for AQ,17,567genes measured by flow cytometry (386.31 and 161.37 Mbp for contained 32,326 SUPERFAMILY domains (28,027 and SC and XT, respectively, see Methods). 26,967 and 22,337 29,156 SUPERFAMILY domains from 17,074 and 17,664 gene models of high quality were predicted covering 94.5 genes for SC and XT, respectively. Additional file 4). Other and 94.3 % of the core eukaryotic genes for SC and XT,re- sponges with public transcript models were excluded due spectively (see Methods). Comparison to publicly available to incompleteness of gene models as shown in Additional sponge gene models from draft genomes or transcrip- file 4 and lack of exact status of LMA and HMA. tomes [9–11] shows that our gene models have reasonable Our results revealed that there had been a striking ex- quality in terms of the number of coding sequences pansion of the Scavenger Receptor Cysteine-Rich (SRCR)- (CDSs), the representation of core eukaryotic gene set like domain in the three tested sponges compared to all [12], the number of genes with protein domains, and the other eukaryotes compiled in the SUPERFAMILY data- number of protein domains (Additional file 4). base (see Additional file 6 for selected taxa). One known function of SRCR-like domains is recognition of large and Expansion of innate immunological domains in sponge diverse patterns of macromolecules (e.g., modified low- hosts density lipoprotein; LDL) on microbial surfaces and en- We checked for protein domains that were unusually hancement of the phagocytic clearance of microbes [7]. In over- or under-represented in the studied sponges com- mammals, malfunctions in SRCR-like-domain-containing pared to other eukaryotes compiled in the SUPERFAM- proteins have been linked to diseases and bacterial/viral ILY database [13]. Most protein domains were neither infections [15]. It has been suggested that a protein con- over- nor under-represented, indicating that our gene taining this domain in the Mediterranean sponge (Petrosia models are comparable to those of other eukaryotes ficiformis) may function in the recognition of photosym- (Additional file 5). Both sponges (particularly SC) bionts [16]. We found that the SC genome contains 2166 showed substantial expansions of immunological and re- SRCR-like domains, which is the highest number found ceptor domains (Additional file 5) [14]. We focused our among the 427 eukaryotes compiled in the SUPERFAM- analysis on protein domains relevant to host-microbe in- ILY database (average, 28 copies). Interestingly, the next- teractions by using four keywords (“symbio,”“innate highest known copy number for this domain family is Ryu et al. BMC Genomics (2016) 17:158 Page 3 of 11 Fig. 2 Domain expansion and contraction in LMA vs. HMA sponges. Innate immune- and symbiosis-related protein domains were selected from the functional annotation. a The number of times a domain occurs in each genome. Shown are domains found ≥ 1.5 times more in SC compared to XT, or vice versa. AQ is included for comparison. The domain occurrence is highly correlated in the LMA sponges (AQ and SC; Pearson correlation coefficient = 0.92). The numbers of genes containing the domains are shown in the bracket. b The co-occurrence of innate immune domains in sponges. Nodes represent domains, while the numbers above the edges indicate the number of proteins in which the two domains co-occur for each sponge (the color key is shown at the bottom-left). Each node size is proportional to the number of outgoing edges. Edges are shown only when the domain pairs were observed ≥ 5 times in ≥ 1species found in AQ, followed closely by the sea urchin, Strongylo- three sponges yielded a large number
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • TEXT-BOOKS of ANIMAL BIOLOGY a General Zoology of The
    TEXT-BOOKS OF ANIMAL BIOLOGY * Edited by JULIAN S. HUXLEY, F.R.S. A General Zoology of the Invertebrates by G. S. Carter Vertebrate Zoology by G. R. de Beer Comparative Physiology by L. T. Hogben Animal Ecology by Challes Elton Life in Inland Waters by Kathleen Carpenter The Development of Sex in Vertebrates by F. W. Rogers Brambell * Edited by H. MUNRO Fox, F.R.S. Animal Evolution / by G. S. Carter Zoogeography of the Land and Inland Waters by L. F. de Beaufort Parasitism and Symbiosis by M. Caullery PARASITISM AND ~SYMBIOSIS BY MAURICE CAULLERY Translated by Averil M. Lysaght, M.Sc., Ph.D. SIDGWICK AND JACKSON LIMITED LONDON First Published 1952 !.lADE AND PRINTED IN GREAT BRITAIN BY WILLIAM CLOWES AND SONS, LlMITED, LONDON AND BECCLES CONTENTS LIST OF ILLUSTRATIONS vii PREFACE TO THE ENGLISH EDITION xi CHAPTER I Commensalism Introduction-commensalism in marine animals-fishes and sea anemones-associations on coral reefs-widespread nature of these relationships-hermit crabs and their associates CHAPTER II Commensalism in Terrestrial Animals Commensals of ants and termites-morphological modifications in symphiles-ants.and slavery-myrmecophilous plants . 16 CHAPTER III From Commensalism to Inquilinism and Parasitism Inquilinism-epizoites-intermittent parasites-general nature of modifications produced by parasitism 30 CHAPTER IV Adaptations to Parasitism in Annelids and Molluscs Polychates-molluscs; lamellibranchs; gastropods 40 CHAPTER V Adaptation to Parasitism in the Crustacea Isopoda-families of Epicarida-Rhizocephala-Ascothoracica
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Examples of Sea Sponges
    Examples Of Sea Sponges Startling Amadeus burlesques her snobbishness so fully that Vaughan structured very cognisably. Freddy is ectypal and stenciling unsocially while epithelial Zippy forces and inflict. Monopolistic Porter sailplanes her honeymooners so incorruptibly that Sutton recirculates very thereon. True only on water leaves, sea of these are animals Yellow like Sponge Oceana. Deeper dives into different aspects of these glassy skeletons are ongoing according to. Sponges theoutershores. Cell types epidermal cells form outer covering amoeboid cells wander around make spicules. Check how These Beautiful Pictures of Different Types of. To be optimal for bathing, increasing with examples of brooding forms tan ct et al ratios derived from other microscopic plants from synthetic sponges belong to the university. What is those natural marine sponge? Different types of sponges come under different price points and loss different uses in. Global Diversity of Sponges Porifera NCBI NIH. Sponges EnchantedLearningcom. They publish the outer shape of rubber sponge 1 Some examples of sponges are Sea SpongeTube SpongeVase Sponge or Sponge Painted. Learn facts about the Porifera or Sea Sponges with our this Easy mountain for Kids. What claim a course Sponge Acme Sponge Company. BG Silicon isotopes of this sea sponges new insights into. Sponges come across an incredible summary of colors and an amazing array of shapes. 5 Fascinating Types of what Sponge Leisure Pro. Sea sponges often a tube-like bodies with his tiny pores. Sponges The World's Simplest Multi-Cellular Creatures. Sponges are food of various nudbranchs sea stars and fish. Examples of sponges Answers Answerscom. Sponges info and games Sheppard Software.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; a.galitz@lrz.uni-muenchen.de (A.G.); woerheide@lmu.de (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; ayocha@waseda.jp 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; peter.schupp@uni-oldenburg.de 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: erpenbeck@lmu.de Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
    Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started.
    [Show full text]
  • Preliminary Report on the Turtle Awareness and Protection Studies
    MINISTRY OF ENVIRONMENT, HONDURAS ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTIVE STUDIES (TAPS) PROGRAM, PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC. (ProTECTOR) IN ROATAN, HONDURAS 2007 – 2008 ANNUAL REPORT JANUARY 15, 2009 ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTION STUDIES (TAPS) PROGRAM UNDER THE PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC (ProTECTOR) IN ROATÁN, HONDURAS ANNUAL REPORT OF THE 2007 – 2008 SEASON Principal Investigator: Stephen G. Dunbar1,2,4 Co-Principal Investigator: Lidia Salinas2,3 Co-Principal Investigator: Melissa D. Berube2,4 1President, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), 2569 Topanga Way, Colton, CA 92324, USA 2 Turtle Awareness and Protection Studies (TAPS) Program, Oak Ridge, Roatán, Honduras 3Country Coordinator, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), Tegucigalpa, Honduras 4Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA PREFACE This report represents the ongoing work of the Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR) in the Bay Islands of Honduras. The report covers activities of ProTECTOR up to and including the 2008 calendar year and is provided in partial fulfillment of the permit agreement provided to ProTECTOR from 2006 to the end of 2008 by the Secretariat for Agriculture and Ranching (SAG). ACKNOWLEDGEMENTS ProTECTOR and TAPS recognize that without the financial and logistical assistance of the “Escuela de Buceo Reef House,” this project would not have been initiated. We thank the owners and staff of that facility for their interest in sea turtle conservation and their invaluable efforts on behalf of the sea turtles of Honduras.
    [Show full text]
  • Suberitidae (Demospongiae, Hadromerida) From
    Beaufortia INSTITUTE OF TAXONOMIC ZOOLOGY (ZOOLOGICAL MUSEUM) UNIVERSITY OF AMSTERDAM Vol. 43 no. 11 December 31, 1993 Suberitidae (Demospongiae, Hadromerida) from the North Aegean Sea EleniVoultsiadou-Koukoura.*& Rob W. M. van Soest** *Department University ofThessaloniki, 54006 Thessaloniki, Greece **Institute of Taxonomic (Zoological Museum), University ofAmsterdam, P.O.Box 94766, 1090 GTAmsterdam, TheNetherlands Keywords: Sponges, Hadromerida, Suberitidae, North Aegean Sea Abstract Sampling in the North Aegean Sea yielded nine species of the family Suberitidae, four of which, Pseudosuberites sulphureus, P. Suberiles for the fauna ofthe Eastern and three hyalinus, ficus and S. syringella, are new Mediterranean, more, S. carnosus, S. and S. records for the fauna of the Sea. For each of the nine the domuncula, massa, are new Aegean species comments on systematics, as well as geographical and ecological informationis given. A redescription is given of the littleknown species Suberites massa Nardo. A review ofthe distributionof all Mediterranean Suberitidae is also presented, in which it is con- in materialhave been from the Eastern cluded that a further three species not represented our reported Mediterranean, and P. the viz. Laxosuberites ectyoninus, Prosuberites longispina, epiphytum. Six suberitids reported from other parts of Mediterra- nean so far have not been found in the Eastern Mediterranean. INTRODUCTION siadou-Koukoura, et al. 1991; Voultsiadou- Koukoura & Van Soest 1991a,b; Voultsiadou- of Eastern Mediterranean is Koukoura & the results of the Knowledge sponges Koukouras, 1993), that of other of the Med- have been and are poor compared to parts sponge collecting being re- iterranean Van 1994: Recent several science and (cf. Soest, Fig. 2). ported; species new to appar- collecting activities in the North Aegean Sea ently endemic to the Eastern Mediterranean been of have been described.
    [Show full text]
  • Računalna Analiza Dugih Nekodirajućih RNA Ogulinske Špiljske Spužvice (Eunapius Subterraneus)
    Računalna analiza dugih nekodirajućih RNA ogulinske špiljske spužvice (Eunapius subterraneus) Bodulić, Kristian Master's thesis / Diplomski rad 2020 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:310016 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-10-04 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Biološki odsjek Kristian Bodulić Računalna analiza dugih nekodirajućih RNA ogulinske špiljske spužvice (Eunapius subterraneus) Diplomski rad Zagreb, 2020. Ovaj rad izrađen je u Grupi za bioinformatiku na Zavodu za molekularnu biologiju Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu pod vodstvom prof. dr. sc. Kristiana Vlahovičeka. Rad je predan na ocjenu Biološkom odsjeku Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja zvanja magistar molekularne biologije. Zahvaljujem mentoru prof. dr. sc. Kristianu Vlahovičeku na stručnom vodstvu te pruženim savjetima, znanju i vremenu. Zahvaljujem Grupi za bioinformatiku na stečenom znanju i iskustvu te ugodnim trenutcima provedenim u uredu u posljednje dvije godine. Posebno zahvaljujem obitelji i prijateljima na velikoj podršci. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Biološki odsjek Diplomski rad RAČUNALNA ANALIZA DUGIH NEKODIRAJUĆIH RNA OGULINSKE ŠPILJSKE SPUŽVICE (EUNAPIUS SUBTERRANEUS) Kristian Bodulić Rooseveltov trg 6, 10000 Zagreb. Hrvatska Pojavom metoda sekvenciranja druge generacije, duge nekodirajuće RNA postale su vrlo zanimljiv predmet bioloških istraživanja. Njihove uloge dokazane su u velikom broju bioloških procesa, od kojih je najvažnije spomenuti regulaciju ekspresije brojnih gena. Ipak, ova skupina RNA još uvijek nije istražena u brojnim koljenima životinja, uključujući i spužve.
    [Show full text]
  • (Familia: Halichondriidae) Para Un Sistema Lagunar Del Golfo De México Revista Ciencias Marinas Y Costeras, Vol
    Revista Ciencias Marinas y Costeras ISSN: 1659-455X ISSN: 1659-407X Universidad Nacional, Costa Rica de la Cruz-Francisco, Vicencio; Rodríguez Muñoz, Salvador; León Méndez, Ramses Giovanni; Duran López, Aarón; Argüelles-Jiménez, Jimmy Primer registro de Amorphinopsis atlantica Carvalho, Hadju, Mothes & van Soest, 2004 (Familia: Halichondriidae) para un sistema lagunar del golfo de México Revista Ciencias Marinas y Costeras, vol. 11, núm. 1, 2019, -Junio, pp. 61-70 Universidad Nacional, Costa Rica DOI: https://doi.org/10.15359/revmar.11-1.5 Disponible en: https://www.redalyc.org/articulo.oa?id=633766165005 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Primer registro de Amorphinopsis atlantica Carvalho, Hadju, Mothes & van Soest, 2004 (Familia: Halichondriidae) para un sistema lagunar del golfo de México First record of Amorphinopsis atlantica Carvalho, Hadju, Mothes & van Soest, 2004 (Family: Halichondriidae) for a lagoon system in the Gulf of Mexico Vicencio de la Cruz-Francisco1*, Jimmy Argüelles-Jiménez2, Salvador Rodríguez Muñoz1, Ramses Giovanni León Méndez1 y Aarón Duran López1 RESUMEN Se registra por primera vez la presencia de Amorphinopsis atlantica en un sistema lagunar del golfo de México. Esta esponja fue reportada en Brasil donde prefiere asentarse sobre costas rocosas y en estuarios. Las observaciones y recolecta de especímenes provienen de la laguna de Tampamachoco, ubicada al norte de Veracruz, México. Los ejemplares registrados se contemplaron como epibiontes en bancos ostrícolas de Isognomon alatus, donde destacaron por su coloración amarilla, y su forma incrustante ahí masiva con ramificaciones prolongadas.
    [Show full text]