Introduction Conclusions Results Methods

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Conclusions Results Methods The Human Connectome Project Bruce Rosen2, Van J. Wedeen2, John D. Van Horn1, Bruce Fischl2, Randy L. Buckner3, Lawrence Wald2, Matti Hamalainen2, Steven Stuebeam2, Joshua Roman2, David W. Shattuck1, Paul M. Thompson1, Roger P. Woods1, Nelson Freimer5, Robert Bilder4, and Arthur W. Toga1 1Laboratory of Neuro Imaging (LONI), Department of Neurology, UCLA, Los Angeles, CA 90025; 2Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Boston, MA; 3Cognitive Neuroscience Laboratory, Department of Psychology, Harvard University, Cambridge, MA; 4Jane & Terry Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90025; 5Center for Neurobehavioral Genetics, UCLA, Los Angeles, CA 90025 Introduction Mapping of the human connectome oers a unique opportunity to understand the complexity of neural connectivity (Sporns et al., 2005, Wedeen et al., 2008, Hag- mann et al., 2007). The Human Connectome Project (HCP) is a project to construct a map of the complete structural and functional neural connections in vivo within and across individuals. The HCP represents the rst large-scale attempt to collect and share data of a scope and detail sucient to begin to address fundamental questions about human connectional anatomy, inter-regional communication, and their variations. Via a close collaboration between MGH and UCLA, this portion of the overall HCP is being developed to employ advanced neuroimaging methods, and to construct an extensive informatics algorithms infrastructure to analyze these data, derive detailed connectivity models capable of also accommodating phe- nomic and genomic data, building upon existing multidisciplinary and collaborative (a) With the advent of diusion neuroimaging methodologies, whole-brain tractography is now easily obtained. (b) How- ever, detailed information on specic ber tracts is frequently limited and subject to cumulative errors in the tractography eorts currently underway. process. (c) Additionally, the details of crossing-bers are important to localize and quantify. Through this joint UCLA- MGH component of the HCP, we will de to connectomics resolution and eciency. Methods The HCP is leveraging key scientic domains that together yield a steady release of increasingly detailed connectomics data and tools. First, we have begun collecting data for the release of a very large, existing connectomic, behavioral and genomic dataset, including connectivity data from MZ/DZ twin pairs, to encourage broad participation in the HCP by the larger re- search community. These rich data will also allow us to quantify genetic (Chiang et al., 2009) and behavioral variation of white matter ber pathways and functional correlations for analy- sis by the entire community, and help dene an optimized methodology for collection of a denitive connectome dataset using diusion spectrum imaging (DSI, V. J. Wedeen, 2005). Con- currently, we are rening and optimizing the spatial and functional resolution of our connectome neuroimaging techniques, to enhance acquisition of still further optimized HCP data, to be shared with the community as the data are acquired. This necessitates deployment of the next generation of MRI scan technology, specically built to extend the limits of DSI. Addi- tionally, our connectome eorts include the acquisition of high resolution neuroimaging data in a small subset of ex vivo whole brain specimens, as well as detailed chemo- and cyto- architectonic analysis and planar polarimetry of these specimens. These datasets will allow us and others to examine correlations between cytoarchitecture and the connectome (Burgel et al., 2006), as well as help validate in vivo results. All the while, we will continuously build and rene vital infrastructure to support the analysis, archiving, and broad-scale dissemination of HCP data and informatics tools. Conclusions This project is presently working to achieve the following goals: 1 ) optimize advanced imaging technologies and computational methods to map the in vivo human connectome using DSI; 2) validate these data against those collected at other HCP sites (Washington University in St. Louis and the University of Minne- sota); 3) through joint eort between UCLA and MGH, construct sophisticated software tools for high-throughput connectomics analysis; 5) develop and disseminate data acquisition and analy- (c) sis, educational, and training outreach materials. Results Through this comprehensive white matter and functional con- nectivity mapping project – using next generation neuroimaging Representations of Anatomy and Connectivity Several visual representations of neuroanatomy and connectivity are shown: (a) pair-wise, regional white matter pathways connecting two ROIs in the default-mode network technologies – we will provide the neuroscience research com- (b) a connectivity matrix, where each cell in the matrix maps to an individual connection munity withnovel data and capabilities for measuring connectiv- (c) a smoothed cortical surface model parceled according to anatomical areas showing the connectivity links between several key areas ity that will signicantly enhance our understanding of the neu- roanatomical and functional connectedness of the human brain. References BURGEL, U., AMUNTS, K., HOEMKE, L., MOHLBERG, H., GILSBACH, J. M. & ZILLES, K. (2006) White matter ber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage, 29, 1092-105. CHIANG, M. C., BARYSHEVA, M., SHATTUCK, D. W., LEE, A. D., MADSEN, S. K., AVEDISSIAN, C., KLUNDER, A. D., TOGA, A. W., MCMAHON, K. L., DE ZUBICARAY, G. I., WRIGHT, M. J., SRIVASTAVA, A., BALOV, N. & THOMPSON, P. M. (2009) Genetics of brain ber architecture and intellectual performance. J Neurosci, 29, 2212-24. HAGMANN, P., KURANT, M., GIGANDET, X., THIRAN, P., WEDEEN, V. J., MEULI, R. & THIRAN, J.-P. (2007) Mapping Human Whole-Brain Structural Networks with Diusion MRI. PLoS ONE, 2, e597. SPORNS, O., TONONI, G. & KOTTER, R. (2005) The human connectome: A structural description of the human brain. PLoS Comput Biol, 1, e42. V. J. WEDEEN, P. H., W.-Y. I. TSENG, T. G. REESE AND R. M. WEISSKOFF. (2005) Mapping complex tissue architecture with diusion spectrum magnetic resonance imaging. Mag. Res. Med., 54, 1377-86. WEDEEN, V. J., WANG, R. P., SCHMAHMANN, J. D., BENNER, T., TSENG, W. Y., DAI, G., PANDYA, D. N., HAGMANN, P., D'ARCEUIL, H. & DE CRESPIGNY, A. J. (2008) Diusion spectrum magnetic resonance imaging (DSI) tractography of crossing bers. Neuroimage, 41, 1267-77..
Recommended publications
  • Imaging Genetic Strategies for Predicting the Quality of Sleep Using Depression-Specific Biomarkers
    Imaging genetic strategies for predicting the quality of sleep using depression-specific biomarkers Mansu Kim 1, Xiaohui Yao 1, Bo-yong Park 2, Jingwen Yan 3, and Li Shen1,* 1Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA 2McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada 3Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University, USA * Correspondence to [email protected] Overview Joint-connectivity-based sparse CCA Background: Sleep is an essential phenomenon for SNP connectivity Imaging genetics model: The joint-connectivity-based sparse canonical ··· X* samples × maintaining good health and wellbeing [1]. correlation analysis (JCB-SCCA) was applied on preprocessed features n Some studies reported that genetic and p SNPs (Figure 1). JCB-SCCA has an advantage for incorporating connectivity Loading vector u Maximum imaging biomarkers that depression is information and can handle multi-modal neuroimaging datasets. correlation Brain associated with sleep disorder [2]–[4]. connectivity ··· Prior biological knowledge: The average connectivity matrix computed ··· K samples Y* modalitiesn × Imaging genetics: Many studies adopted imaging from the HCP dataset and linkage disequilibrium obtained from 1,000 q voxels genetics methodology to find associations genome project were used as the prior connectivity information of the K = 2 Loading vector V between imaging and genetic biomarkers. In algorithm. The parameters of the algorithm were tuned jointly by nested K = 1 this study, we examine the imaging genetics five-fold cross-validation. Figure 1. JCB-SCCA association in depression and extract biomarkers for predicting the quality of sleep. Experiments and Results Prediction task: We built a prediction model for the Pittsburgh sleep quality index (PSQI) using the identified biomarkers.
    [Show full text]
  • Conservation and Divergence of Related Neuronal Lineages in The
    RESEARCH ARTICLE Conservation and divergence of related neuronal lineages in the Drosophila central brain Ying-Jou Lee, Ching-Po Yang, Rosa L Miyares, Yu-Fen Huang, Yisheng He, Qingzhong Ren, Hui-Min Chen, Takashi Kawase, Masayoshi Ito, Hideo Otsuna, Ken Sugino, Yoshi Aso, Kei Ito, Tzumin Lee* Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States Abstract Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms. *For correspondence: Introduction [email protected] In order to understand how the genome encodes behavior, we need to study the developmental mechanisms that build and wire complex centers in the brain. The fruit fly is an ideal model system Competing interests: The to research these mechanisms. The Drosophila field has extensive genetic tools.
    [Show full text]
  • Data Mining in Genomics, Metagenomics and Connectomics
    Csaba Kerepesi DATA MINING IN GENOMICS, METAGENOMICS AND CONNECTOMICS PhD Thesis Supervisor: Dr. Vince Grolmusz Department of Computer Science E¨otv¨osLor´andUniversity, Hungary PhD School of Computer Science E¨otv¨osLor´andUniversity, Hungary Dr. Erzs´ebet Csuhaj-Varj´u PhD Program of Information Systems Dr. Andr´as Bencz´ur Budapest, 2017 Acknowledgements I would like to thank my supervisor Dr. Vince Grolmusz for his tireless support with which he started my scientific career. I am very grateful to the PhD School of Computer Science and the Faculty of Informatics, ELTE for their inexhaustible support. I would like to thank my co-authors for their precious work and I also would like to thank all my colleagues, who helped me anything in my re- searches. Finally, I would like to thank my family for their everlasting support. 2 Contents 1 Introduction 6 2 Data Mining in Genomics and Metagenomics 14 2.1 AmphoraNet: The Webserver Implementation of the AM- PHORA2 Metagenomic Workflow Suite . 14 2.1.1 Introduction . 14 2.1.2 Results and Discussion . 15 2.2 Visual Analysis of the Quantitative Composition of Metage- nomic Communities: the AmphoraVizu Webserver . 17 2.2.1 Introduction . 17 2.2.2 Results and Discussion . 19 2.3 Evaluating the Quantitative Capabilities of Metagenomic Analysis Software . 21 2.3.1 Introduction . 21 2.3.2 Results and discussion . 22 2.3.3 Methods . 25 2.3.4 Availability . 29 2.4 The \Giant Virus Finder" Discovers an Abundance of Giant Viruses in the Antarctic Dry Valleys . 30 2.4.1 Introduction . 30 3 2.4.2 Results and discussion .
    [Show full text]
  • Polygenic Evidence and Overlapped Brain Functional Connectivities For
    Sun et al. Translational Psychiatry (2020) 10:252 https://doi.org/10.1038/s41398-020-00941-z Translational Psychiatry ARTICLE Open Access Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance Jie Sun 1,2,3,WeiYan2,Xing-NanZhang2, Xiao Lin2,HuiLi2,Yi-MiaoGong2,Xi-MeiZhu2, Yong-Bo Zheng2, Xiang-Yang Guo3,Yun-DongMa2,Zeng-YiLiu2,LinLiu2,Jia-HongGao4, Michael V. Vitiello 5, Su-Hua Chang 2,6, Xiao-Guang Liu 1,7 and Lin Lu2,6 Abstract Chronic pain and sleep disturbance are highly comorbid disorders, which leads to barriers to treatment and significant healthcare costs. Understanding the underlying genetic and neural mechanisms of the interplay between sleep disturbance and chronic pain is likely to lead to better treatment. In this study, we combined 1206 participants with phenotype data, resting-state functional magnetic resonance imaging (rfMRI) data and genotype data from the Human Connectome Project and two large sample size genome-wide association studies (GWASs) summary data from published studies to identify the genetic and neural bases for the association between pain and sleep disturbance. Pittsburgh sleep quality index (PSQI) score was used for sleep disturbance, pain intensity was measured by Pain Intensity Survey. The result showed chronic pain was significantly correlated with sleep disturbance (r = 0.171, p-value < 0.001). Their genetic correlation was rg = 0.598 using linkage disequilibrium (LD) score regression analysis. Polygenic score (PGS) association analysis showed PGS of chronic pain was significantly associated with sleep and vice versa. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Nine shared functional connectivity (FCs) were identified involving prefrontal cortex, temporal cortex, precentral/ postcentral cortex, anterior cingulate cortex, fusiform gyrus and hippocampus.
    [Show full text]
  • Local Connectome Phenotypes Predict Social, Health, and Cognitive Factors
    RESEARCH Local connectome phenotypes predict social, health, and cognitive factors 1 2,3 4,5 Michael A. Powell , Javier O. Garcia , Fang-Cheng Yeh , 2,3,6 7 Jean M. Vettel , and Timothy Verstynen 1Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA 2U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA 3Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA 4Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA 5Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA 6Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA 7 an open access journal Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA Keywords: Local connectome, White matter, Individual differences, Behavior prediction, Structural connectivity ABSTRACT The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This Citation: Powell, M. A., Garcia, J. O., fingerprinting approach was applied to a large sample (N = 841) of subjects from the Yeh, F.-C., Vettel, J. M., & Verstynen, T. (2017). Local connectome phenotypes Human Connectome Project, revealing a reliable degree of between-subject correlation in predict social, health, and cognitive factors.
    [Show full text]
  • Proteomic Analysis of Postsynaptic Proteins in Regions of the Human Neocortex
    Proteomic analysis of postsynaptic proteins in regions of the human neocortex Marcia Roy1*, Oksana Sorokina2*, Nathan Skene1, Clemence Simonnet1, Francesca Mazzo3, Ruud Zwart3, Emanuele Sher3, Colin Smith1, J Douglas Armstrong2 and Seth GN Grant1. * equal contribution Author Affiliations: 1. Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom 2. School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom 3. Lilly Research Centre, Eli Lilly & Company, Erl Wood Manor, Windlesham, GU20 6PH, United Kingdom 1 Abstract: The postsynaptic proteome of excitatory synapses comprises ~1,000 highly conserved proteins that control the behavioral repertoire and mutations disrupting their function cause >130 brain diseases. Here, we document the composition of postsynaptic proteomes in human neocortical regions and integrate it with genetic, functional and structural magnetic resonance imaging, positron emission tomography imaging, and behavioral data. Neocortical regions show signatures of expression of individual proteins, protein complexes, biochemical and metabolic pathways. The compositional signatures in brain regions involved with language, emotion and memory functions were characterized. Integrating large-scale GWAS with regional proteome data identifies the same cortical region for smoking behavior as found with fMRI data. The neocortical postsynaptic proteome data resource can be used to link genetics to brain imaging and behavior, and to study the role of postsynaptic proteins in localization of brain functions. 2 Introduction: For almost two centuries, scientists have pursued the study of localization of function in the human cerebral neocortex using diverse methods including neuroanatomy, electrophysiology, imaging and gene expression studies. The frontal, parietal, temporal and occipital lobes of the neocortex have been commonly subdivided into Brodmann areas (BA)1 based on cytoarchitectural features, and specific behavioral functions have been ascribed to these regions.
    [Show full text]
  • A Critical Look at Connectomics
    EDITORIAL A critical look at connectomics There is a public perception that connectomics will translate directly into insights for disease. It is essential that scientists and funding institutions avoid misrepresentation and accurately communicate the scope of their work. onnectomes are generating interest and excitement, both among ­nervous ­system, dubbed the classic connectome because it is ­currently neuroscientists and the public. This September, the first grants the only wiring diagram for an animal’s entire nervous system at the level Cunder the Human Connectome Project, totaling $40 ­million of the synapse. Although major neurobiological insights have been made over 5 years, were awarded by the US National Institutes of Health using C. elegans and its known connectivity and genome, there are still (NIH). In the public arena, striking, colorful pictures of human brains many questions remaining that can only be answered by hypothesis-driven have ­accompanied claims that imply that understanding the complete experiments. For example, we still don’t completely understand the process ­connectivity of the human brain’s billions of neurons by a trillion ­synapses of axon regeneration, relevant to spinal cord injury in humans, in this is not only ­possible, but that this will also directly translate into insights comparatively simple system. Thus, a connectome, at any resolution, is for neurological and psychiatric disorders. Even a press release from only one of several complementary tools necessary to understand nervous the NIH touted that the Human Connectome Project would map the system disease and injury. ­wiring diagram of the entire living human brain and would link these There are substantial efforts aimed at generating connectomes for circuits to the full spectrum of brain function in health and disease.
    [Show full text]
  • Download Download
    NEUROSCIENCE RESEARCH NOTES OPEN ACCESS | EDITORIAL ISSN: 2576-828X From online resources to collaborative global neuroscience research: where are we heading? Pike See Cheah 1,2, King-Hwa Ling 2,3 and Eric Tatt Wei Ho 4,* 1 Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. 2 NeuroBiology & Genetics Group, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. 3 Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. 4 Center for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Perak, Malaysia. *Corresponding authors: [email protected]; Tel.: +60-5-368-7899 Published: 21 July 2020 https://doi.org/10.31117/neuroscirn.v3i3.51 Keywords: neuroinformatics; machine learning; bioinformatics; brain project; online resources; databases ©2020 by Cheah et al. for use and distribution in accord with the Creative Commons Attribution (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. 1.0 INTRODUCTION The most visible contributions from neuroinformatics Neuroscience has emerged as a richly transdisciplinary include the myriad reference atlases of brain anatomy field, poised to leverage potential synergies with (human and other mammals such as rodents, primates information technology. To investigate the complex and pig), gene and protein sequences and the nervous system in its normal function and the disease bioinformatics software tools for alignment, matching state, researchers in the field are increasingly reliant and identification. Other neuroinformatics initiatives on generating, sharing and analyzing diverse data from include the various open-source preprocessing and multiple experimental paradigms at multiple spatial processing software and workflows for data analysis as and temporal scales (Frackowiak & Markram, 2015).
    [Show full text]
  • Genetic and Environmental Influence on the Human Functional Connectome Andrew E
    Cerebral Cortex, 2019;00: 1–15 doi: 10.1093/cercor/bhz225 Original Article Downloaded from https://academic.oup.com/cercor/advance-article-abstract/doi/10.1093/cercor/bhz225/5618752 by guest on 03 March 2020 ORIGINAL ARTICLE Genetic and Environmental Influence on the Human Functional Connectome Andrew E. Reineberg 1, Alexander S. Hatoum2, John K. Hewitt1,2, Marie T. Banich3 and Naomi P. Friedman1,2 1Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309, USA, 2Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA, and 3Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA Address correspondence to Andrew E. Reineberg, email: [email protected] http://orcid.org/0000-0002-0806-440X Abstract Detailed mapping of genetic and environmental influences on the functional connectome is a crucial step toward developing intermediate phenotypes between genes and clinical diagnoses or cognitive abilities. We analyzed resting-state functional magnetic resonance imaging data from two adult twin samples (Nos = 446 and 371) to quantify genetic and environmental influence on all pairwise functional connections between 264 brain regions (∼35 000 functional connections). Nonshared environmental influence was high across the whole connectome. Approximately 14–22% of connections had nominally significant genetic influence in each sample, 4.6% were significant in both samples, and 1–2% had heritability estimates greater than 30%. Evidence of shared environmental influence was weak. Genetic influences on connections were distinct from genetic influences on a global summary measure of the connectome, network-based estimates of connectivity, and movement during the resting-state scan, as revealed by a novel connectome-wide bivariate genetic modeling procedure.
    [Show full text]
  • National Institute of Mental Health Strategic Plan for Research
    NATIONAL INSTITUTE OF MENTAL HEALTH STRATEGIC PLAN FOR RESEARCH Table of Contents Table of Contents Message from the Director ............................................................................................................................................ 1 Overview of NIMH ......................................................................................................................................................... 3 Serving as an Efficient and Effective Steward of Public Resources ............................................................................... 5 Scientific Stewardship ............................................................................................................................................... 5 Management and Accountability .............................................................................................................................. 7 Accomplishing the Mission ............................................................................................................................................ 9 Challenges and Opportunities ..................................................................................................................................... 10 Suicide Prevention................................................................................................................................................... 10 Early Intervention in Psychosis ...............................................................................................................................
    [Show full text]
  • Connectome Imaging for Mapping Human Brain Pathways
    OPEN Molecular Psychiatry (2017) 22, 1230–1240 www.nature.com/mp EXPERT REVIEW Connectome imaging for mapping human brain pathways Y Shi and AW Toga With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. Molecular Psychiatry (2017) 22, 1230–1240; doi:10.1038/mp.2017.92; published online 2 May 2017 INTRODUCTION These rich resources in connectome imaging present great Mapping the connectivity of brain circuits is fundamentally opportunities to map human brain pathways at unprecedented 22,23 important for our understanding of the functions of human brain. accuracy. On the other hand, this avalanche of BIG DATA in 24,25 Various neurological and mental disorders have been linked to the connectomics also poses challenges for existing image disruption of brain connectivity in circuits such as the cortico– analysis algorithms.
    [Show full text]
  • A Distributed Brain Network Predicts General Intelligence from Resting-State Human Neuroimaging Data
    bioRxiv preprint doi: https://doi.org/10.1101/257865; this version posted January 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A distributed brain network predicts general intelligence from resting-state human neuroimaging data 1,4 5 1,3 1,2,3 Julien Dubois ,​ Paola Galdi ,​ Lynn K. Paul ​ , Ralph Adolphs ​ ​ ​ ​ 1 ​ Division of Humanities and Social Sciences, California Institute of Technology, Pasadena CA 91125, USA 2 ​ Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125, USA 3 ​ Chen Neuroscience Institute, California Institute of Technology, Pasadena CA 91125, USA 4 ​ Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA 5 ​ Department of Management and Innovation Systems, University of Salerno, Fisciano, Salerno, Italy Correspondence: Julien Dubois Department of Neurosurgery Cedars-Sinai Medical Center, Los Angeles, CA 90048 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/257865; this version posted January 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Individual people differ in their ability to reason, solve problems, think abstractly, plan and learn. A reliable measure of this general ability, also known as intelligence, can be derived from scores across a diverse set of cognitive tasks. There is great interest in understanding the neural underpinnings of individual differences in intelligence, since it is the single best predictor of long-term life success, and since individual differences in a similar broad ability are found across animal species.
    [Show full text]