Mini-RF S-Band Observation of Ohm and Stevinus Craters Using Circular Polarization Ratio and M-Chi Decomposition Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Mini-RF S-Band Observation of Ohm and Stevinus Craters Using Circular Polarization Ratio and M-Chi Decomposition Techniques J. Earth Syst. Sci. (2020) 129:105 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-020-1370-8 (0123456789().,-volV)(0123456789().,-volV) Mini-RF S-band observation of Ohm and Stevinus craters using circular polarization ratio and m-chi decomposition techniques 1, 1,2 1 ASHKA DTHAKER *, SHREEKUMARI MPATEL and PARAS MSOLANKI 1Department of Geology, M.G. Science Institute, Ahmedabad 380 009, India. 2Research Scholar, Gujarat University, Ahmedabad 380 009, India. *Corresponding author. e-mail: [email protected] MS received 5 August 2019; revised 13 January 2020; accepted 19 January 2020 The aim of the study was to observe two lunar impact craters of Copernican age, Ohm (18.4°N, 113.5°W) and Stevinus (32.5°S, 54.2°E) under microwave radar data of Miniature Radio Frequency (Mini-RF), an instrument onboard Lunar Reconnaissance Orbiter (LRO) of NASA, where Ohm is located on the far side of the Moon and Stevinus is situated on the near side of the Moon. We have analyzed the characters of impact ejecta melt of both the craters in radar data which are not evidently distinguished in the high resolution optical data of narrow angle camera (NAC) and wide angle camera (WAC) of LRO mission. Circular polarization ratio (CPR) and m-chi decomposition images were developed using ENVI and ArcGIS software which were used to understand surface roughness and backscattering properties of Ohm and Stevinus craters. Both the craters evidently have high CPR values indicating either exposure of fresh material or elevated surface roughness due to surface geometry. The m-chi decomposition of Ohm and Stevinus craters shows dominant yellowish hue suggesting a backscatter combination of double-bounce (db) scattering and volume scattering (vs) in contrast to the surrounding terrain which shows Bragg scattering (bs) according to the 7-fold classiBcation colour-wheel. Using available optical and Mini-RF data geological maps of both the craters were generated including features such as boundary of ejecta blanket, ejecta boulders and mass wasting in the crater. Keywords. Ohm; Stevinus; circular polarization ratio; m-chi decomposition. 1. Introduction camera (WAC) and narrow angle camera (NAC), ultimately the brighter or younger material will be Impact cratering is a copious geological event susceptible to space weathering masking their inCuencing the Moon and it plays a major role in original properties (Lucey et al. 2000). Further- determining material distribution on the Moon more, optical datasets are only responsive up to the surface (Melosh 1989). Determining the physical top few millimetres of the surface (Saran et al. properties of such material by observing the Bnal 2014). Contrary to this, radar provides an exclu- crater morphology can give decisive perception on sive means to analyze surface and subsurface chronological events as well as subsurface resources physical properties of the Moon by inBltrating (Senft and Stewart 2007). Albeit many things can signals of several wavelengths. The Miniature be determined by optical observation of impact Radio Frequency (Mini-RF) instrument is such craters in imaging instruments like wide angle hybrid-polarized, synthetic aperture radar carried 105 Page 2 of 11 J. Earth Syst. Sci. (2020) 129:105 by Lunar Reconnaissance Orbiter (LRO) of NASA 3. Data and methodology that penetrates up to a meter in the lunar surface. Mini-RF transmits two different wavelengths, As mentioned above, we have used S-band ‘zoom’ either S-band (12.6 cm) or X-band (4.2 cm). There mode data which was downloaded from PDS Geo- are two distinct modes, one of which is ‘baseline’ science Node of NASA. Mini-RF is accustomed of mode with 150 m resolution and other is a ‘zoom’ dual polarized radar that transmits on a single mode with 15 9 30 m resolution (Raney 2006). linear polarization (e.g., H) and receives on two In this study, we have used S-band zoom data to polarizations among which, one is corresponding to determine backscattering and surface roughness of the transmitted one (H) and another is orthogonal two lunar impact craters Ohm and Stevinus, which counterpart (V) of the linear polarization (crossed- we then compared to optical datasets of NAC and polarized) (Raney et al. 2012). This phenomenon WAC. The Mini-RF data also revealed ejecta allows calculation of all four Stokes parameters S1, materials including melt Cows which are not S2, S3 and S4 (Raney 2006). optically visible in the NAC or WAC data. 2 2 S1 ¼ \jjEH þ jjEV [ ; S ¼ \jjE 2À jjE 2 [ ; 2 H V ð1Þ 2. Regional setting and study areas à S3 ¼ 2Re\EH EV [ ; à The study area includes two lunar impact craters: S4 ¼À2Im\EH EV [ : Ohm and Stevinus. Among which, Ohm is located In these equations, E is the complex voltage in on the far side of the Moon and Stevinus is located the subscripted polarization, Re and Im stand for on the near side of the Moon. Interestingly, both the real and the imaginary value of the complex the craters are situated in highland area displaying cross-product amplitude, respectively, the ray systems extending for several kilometres. chevrons ( ) indicate spatial averaging and ‘*’ According to Wilhelms (1987), the ray systems \[ represents the conjugate (Raney et al. 2012). signify the Copernican age of both the craters. Here, the S Stokes parameter indicates mea- Ohm crater (18.4°N, 113.5°W), with a diameter 1 surement of total average power of the received of 64 km (Andersson and Whitaker 1982), lies signal. The S and S parameters calculate the linear attached to the north-eastern rim of crater Comire 2 3 polarization power and S computes whether the K and to the south of Comire crater. To its north- 4 polarized power is circularly right or left polarized. west, a large crater Shternberg and to its south- Left circularly polarized power is indicated by the west, Kamerlingh Onnes are present. In optical negative sign on the S parameter (Raney 2007). data, Ohm shows sharply deBned and mostly 4 These Stokes parameters can be used to compute symmetrical rim except for a slightly irregular several child parameters generally used for the southern end of the rim. For a complex crater, analysis of radar data. The most commonly derived Ohm lacks a prominent central peak but large product is the circular polarization ratio (CPR). sized, irregular central mounds are present. Ohm The CPR is a robust indicator of the surface exhibits diverse melt features such as cooling roughness (Campbell et al. 2010). CPR is deBned cracks on the crater Coor, melt Cows and melt as the ratio of transmitted polarization signal as ponds along the interior side as well as the exterior same-sense (SC) to the returned polarization signal side of the crater. as opposite-sense (OC) (Cahill et al. 2014). Using Stevinus (32.5°S, 54.2°E) is one of the few large Stokes vectors, CPR can be calculated as: craters situated in the south-east part of the Moon with a diameter of 75 km (Andersson and Whitaker ðÞS ÀS CPR ¼ 1 4 : ð2Þ 1982). Stevinus is a neighbour to a small crater ðÞS þ S named Stevinus A, which has a small ray system of 1 4 its own with a relatively higher albedo. In contrast to Relatively smooth surfaces lead to single-bounce Ohm, Stevinus crater has a massive but slightly oA- backscattering indicating low CPR values centred central peak. The crater walls are highly (typically \ 0.4), whereas slightly rougher lunar terraced with smooth melt ponds trapped in between. surfaces cause double-bounce backscattering The study area is highlighted on the LROC leading to high CPR values of 1 and above (Carter WAC (100 m) global morphology mosaic in et al. 2012). However, the CPR calculations are Bgure 1. simpliBed and there might be some exceptions to it. J. Earth Syst. Sci. (2020) 129:105 Page 3 of 11 105 Figure 1. LocationsofOhmandStevinuscratershighlightedwiththeredcolouredboxesonLROCWACglobalmosaic. Therefore, it is important to consider other available ArcGIS software and subsequently compared to the perceptions as well (Raney et al. 2012). optical datasets of LRO narrow angle camera Other daughter products used in this study are (0.5 m/pixel) and LRO wide angle camera global the degree of polarization (m), degree of circularity morphology mosaic (100 m/pixel) to distinguish (v) and the m-chi decomposition which we calcu- areas having high surface roughness. The NAC data lated using referenced equations (Raney et al. was downloaded from the PILOT (Planetary Image 2012). Locate Tool) imagery archive of NASA and the Degree of polarization WAC mosaic was downloaded from the Astropedia, ÀÁ lunar and planetary cartographic catalog. 2 2 2 1=2 m ¼ S2 þ S3 þ S4 =S1; ð3Þ The degree of circularity 4. Results and discussions ðvÞSin 2v ¼ÀðÞS4 = ðÞm à S1 : ð4Þ The m-chi decomposition was generated to Overall, Ohm crater exhibits asymmetrical distribu- enhance the information provided by the CPR tion of ejecta with most extensive ejecta in the SW and for detailed demarcation of types of back- direction (Neish et al. 2014). Through the available scattering such as single bounce, double bounce Mini-RF data, we observed continuous and discon- or randomly polarized backscatter (Raney et al. tinuous ejecta melt sheets in Ohm. Continuous ejecta 2012). The interpretation of backscattering is blanket of a crater roughly extends up to one crater expressed using colour-codes such as: radius from the rim (Melosh 1989) and mostly consists of broken remains of the target materials. Such con- 1=2 R ¼½m à S1 Ãð1 þ Sin 2vÞ=2 ; tinuous ejecta is thus more hummocky in nature. 1=2 Discontinuous ejecta on the other hand can extend up G ¼ ½S1 à ðÞ1Àm ; ð5Þ to thousands of crater radii and is quite patchy and 1=2 thin (Melosh 1989).
Recommended publications
  • Ices on Mercury: Chemistry of Volatiles in Permanently Cold Areas of Mercury’S North Polar Region
    Icarus 281 (2017) 19–31 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region ∗ M.L. Delitsky a, , D.A. Paige b, M.A. Siegler c, E.R. Harju b,f, D. Schriver b, R.E. Johnson d, P. Travnicek e a California Specialty Engineering, Pasadena, CA b Dept of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA c Planetary Science Institute, Tucson, AZ d Dept of Engineering Physics, University of Virginia, Charlottesville, VA e Space Sciences Laboratory, University of California, Berkeley, CA f Pasadena City College, Pasadena, CA a r t i c l e i n f o a b s t r a c t Article history: Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008– Received 3 January 2016 2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury’s Revised 29 July 2016 north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen Accepted 2 August 2016 organics that can persist over long geologic timescales and evolve under the influence of the Mercury Available online 4 August 2016 space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot Keywords: reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. Mercury surface ices magnetospheres However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles radiolysis and induce ice chemistry.
    [Show full text]
  • Geologic Gems of California's State Parks
    STATE OF CALIFORNIA – EDMUND G. BROWN JR., GOVERNOR NATURAL RESOURCES AGENCY – JOHN LAIRD, SECRETARY CALIFORNIA GEOLOGICAL SURVEY DEPARTMENT OF PARKS AND RECREATION – LISA MANGAT, DIRECTOR JOHN D. PARRISH, Ph.D., STATE GEOLOGIST DEPARTMENT OF CONSERVATION – DAVID BUNN, DIRECTOR PLATE 1 The rugged cliffs of Del Norte Coast Redwoods State Park are composed of some of California’s Bio-regions the most tortured, twisted, and mobile rocks of the North American continent. The California’s Geomorphic Provinces rocks are mostly buried beneath soils and covered by vigorous redwood forests, which thrive in a climate famous for summer fog and powerful winter storms. The rocks only reveal themselves in steep stream banks, along road and trail cut banks, along the precipitous coastal cliffs and offshore in the form of towering rock monuments or sea stacks. (Photograph by CalTrans staff.) Few of California’s State parks display impressive monoliths adorned like a Patrick’s Point State Park displays a snapshot of geologic processes that have castle with towering spires and few permit rock climbing. Castle Crags State shaped the face of western North America, and that continue today. The rocks Park is an exception. The scenic beauty is best enjoyed from a distant exposed in the seacliffs and offshore represent dynamic interplay between the vantage point where one can see the range of surrounding landforms. The The Klamath Mountains consist of several rugged ranges and deep canyons. Klamath/North Coast Bioregion San Joaquin Valley Colorado Desert subducting oceanic tectonic plate (Gorda Plate) and the continental North American monolith and its surroundings are a microcosm of the Klamath Mountains The mountains reach elevations of 6,000 to 8,000 feet.
    [Show full text]
  • Study of Acoustic Cavitation Near Metal Surfaces Contaminated by Uranium Ran Ji
    Study of acoustic cavitation near metal surfaces contaminated by uranium Ran Ji To cite this version: Ran Ji. Study of acoustic cavitation near metal surfaces contaminated by uranium. Other. Université Montpellier, 2018. English. NNT : 2018MONTS131. tel-02282007 HAL Id: tel-02282007 https://tel.archives-ouvertes.fr/tel-02282007 Submitted on 9 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈ SE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Sé parative - Maté riaux et Procé dé s É cole doctorale Sciences Chimiques Balard (ED 459) Unité de recherche Institut de Chimie Sé parative de Marcoule (UMR 5257) Study of Acoustic Cavitation near Metal Surfaces Contaminated by Uranium Pré senté e par Ran JI Le 13 novembre 2018 Sous la direction de Sergueï NIKITENKO Rapport de gestion Devant le jury composé de [Jean-Franç ois DUFÊ CHE, Prof, Université Montpellier] [Pré sident] [Jean-Yves HIHN, Prof, Université de Franche-Comté ] [Rapporteur] 2015 [Laurie BARTHE, MCF, INP Toulouse] [Rapporteur] [Sergueï NIKITENKO, DR, CNRS Montpellier] [Directeur de Thè se] [Claire LE NAOUR, CR, Université Paris Saclay] [Examinateur] [Micheline DRAYE, Prof, Université Savoie Mont Blanc] [Examinateur] [Rachel PFLIEGER, CR, CEA Marcoule] [Encadrant] [Matthieu VIROT, CR, CEA Marcoule] [Encadrant] [Pascal PILUSO, CR, CEA Cadarache] [Invité ] “The unity of inner knowledge and action” [Wang Yangming] Acknowledgements Acknowledgements The doctoral study of the past three years has greatly enriched my experience in academic and personal life.
    [Show full text]
  • Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
    Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse.
    [Show full text]
  • Government of India Atomic Energy Commission Bhabha
    -5, B.A.R.C.-1076 GOVERNMENT OF INDIA tpMTSJ S*5^ 3IMHT ATOMIC ENERGY COMMISSION RESEARCH & DEVELOPMENT Activities of the NEUTRON PHVSICS DIVISION For tbe .period January 1979-December 1979 Edited by Tejen K. Basu and Y. K. Vohra BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1980 B.A. R. C. - 107* GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION U 0* < RESEARCH k DEVELOPMENT Activities of the NEUTRON PHYSICS DIVISION For the period January 1979-December 1979 Edited by Tejen K. Basu and V. K. Vohra BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1980 INIS Subject Category : F62 Descriptors BARC RESEARCH PROGRAMS PURNIMA II REACTOR REACTOR PHYSICS CRYSTALLOGRAPHY NEUTRON DIFFRACTION SEISMOLOGY PHASE TRANSFORMATIONS SOLIDS FOREWORD The research and development activities of the Neutron Physics Division cover the fields of reactor neutron physics, applied neutronics, fusion plasma pinches, materials physics, crystallography and seismology. The Furnima group has continued work on two ^-^u-fuelled low- critical mass systems - a BeO-reflected uranyl nitrate solution critical Bystem and a neutron source for neutron radiography to be set up at RRC, Kalpakkam. The criticality formula which was proposed here and which avoids extensive computation has been developed further for use with micro-fission systems, safety-related calculations, etc. The physics of high-density plasma-focus devices, which lie bet- ween magnetic confinement and inertial confinement fusion schemes, has been developing as a major interest of the Division in the last few years. A 21KJ, 50KV fast capacitor bank was commissioned during this period for these experiments. Fusion blanket neutronics experiments have been planned with the 14 MeV neutron generator in the Division and many experimental tech- niques related to these have been developed.
    [Show full text]
  • Adams Adkinson Aeschlimann Aisslinger Akkermann
    BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • Radioanalytical Multi-Elemental Analysis: New Methodology and Archaeometric Applications
    RADIOANALYTICAL MULTI-ELEMENTAL ANALYSIS: NEW METHODOLOGY AND ARCHAEOMETRIC APPLICATIONS ________________________________________________________________ A Dissertation presented to the Faculty of the Graduate Committee University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by Magen E. Coleman Dr. J. David Robertson, Dissertation Supervisor MAY 2010 © Copyright by Magen E. Coleman, 2010 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled: RADIOANALYTICAL MULTI-ELEMENTAL ANALYSIS: NEW METHODOLOGY AND ARCHAEOMETRIC APPLICATIONS Presented by Magen E. Coleman, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. ____________________________________ Dr. J. David Robertson ____________________________________ Dr. Michael Glasscock ____________________________________ Dr. Silvia S. Jurisson ____________________________________ Dr. C. Michael Greenlief For my parents who always supported me no matter what I wanted to do; For my professors who believed that I could accomplish great things; For my friends, fellow graduate students, who helped me survive with my sanity (relatively) intact; And for Beau, who was always there to help, support, listen, and just love me. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. J. David Robertson. He took a chance on a student with no background in radiochemistry and challenged me to never accept mediocrity in my research. Without his patience and support, I would not have been able to achieve what I have: a Ph.D. in chemistry and a postdoctoral position at a national lab. His support of interdisciplinary research is remarkable and his teaching style is always inspiring.
    [Show full text]
  • Mars Express
    sp1240cover 7/7/04 4:17 PM Page 1 SP-1240 SP-1240 M ARS E XPRESS The Scientific Payload MARS EXPRESS The Scientific Payload Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 AAsec1.qxd 7/8/04 3:52 PM Page 1 SP-1240 August 2004 MARS EXPRESS The Scientific Payload AAsec1.qxd 7/8/04 3:52 PM Page ii SP-1240 ‘Mars Express: A European Mission to the Red Planet’ ISBN 92-9092-556-6 ISSN 0379-6566 Edited by Andrew Wilson ESA Publications Division Scientific Agustin Chicarro Coordination ESA Research and Scientific Support Department, ESTEC Published by ESA Publications Division ESTEC, Noordwijk, The Netherlands Price €50 Copyright © 2004 European Space Agency ii AAsec1.qxd 7/8/04 3:52 PM Page iii Contents Foreword v Overview The Mars Express Mission: An Overview 3 A. Chicarro, P. Martin & R. Trautner Scientific Instruments HRSC: the High Resolution Stereo Camera of Mars Express 17 G. Neukum, R. Jaumann and the HRSC Co-Investigator and Experiment Team OMEGA: Observatoire pour la Minéralogie, l’Eau, 37 les Glaces et l’Activité J-P. Bibring, A. Soufflot, M. Berthé et al. MARSIS: Mars Advanced Radar for Subsurface 51 and Ionosphere Sounding G. Picardi, D. Biccari, R. Seu et al. PFS: the Planetary Fourier Spectrometer for Mars Express 71 V. Formisano, D. Grassi, R. Orfei et al. SPICAM: Studying the Global Structure and 95 Composition of the Martian Atmosphere J.-L. Bertaux, D. Fonteyn, O. Korablev et al.
    [Show full text]
  • Astronautics and Aeronautics, 1966
    NASA SP-4007 ASTRONAUTICS AND AERONAUTICS, 1966 Chronology on Science, Technology, and Policy Text by Science and Technology Division Library of Congress Sponsored by NASA Historical Staff Office of Policy Screntrfic and Technrcal Information Divisron 1967 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WaJhington, D.C. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price 8.50 (paper cover) Library of Congrcss Catalog Card Nmbcr 66-60096 Foreword . .. At the opening of the tenth year in the era of man’s mobility in outer space, we can look back on 1966 as offering convincing evidence that the United States had gained great competence. This evidence included: five orbital space flights by ten Gemini astronauts; four lunar missions under- taking the orbiting of and softlanding on the moon; numerous contributions to scientific knowledge by unmanned spacecraft and sounding rockets; and further demonstrations of the practical utility of operational space systems, including weather and communications satellites. During 1966, a record 100 American spacecraft were placed into earth orbit or on escape trajectories. Thousands of revealing and useful pictures of the earth were taken from space and of the moon from lunar orbit and on its surface. The Gemini program ended with rendezvous and docking experiments and extravehicular activity by the Gemini test pilots as the Apollo R&D test flights leading to the manned lunar mission came into the schedule. Thirty-five major scientific, technological, and operational mile- stones were cited for 1966 by the President in his Report to the Congress on aeronautical and space activities of the United States.
    [Show full text]
  • Can a Crystal Be the Ground State of a Bose System?
    Can a crystal be the ground state of a Bose system? Maksim D. Tomchenko Bogolyubov Institute for Theoretical Physics 14b, Metrolohichna Str., Kyiv 03143, Ukraine It is usually assumed that the Bose crystal at T = 0 corresponds to the genuine ground state of a Bose system, i.e., this state is non-degenerate and is described by the wave function without nodes. By means of symmetry analysis we show that the ground state of a Bose system of any density should correspond to a liquid or gas, but not to a crystal. The main point is that any anisotropic state of a system of spinless bosons is degenerate. We prove this for an infinite three-dimensional (3D) system and a finite ball-shaped 3D system. One can expect that it is true also for a finite system of any form. Therefore, the anisotropic state cannot be the genuine ground state. Hence, a zero-temperature natural 3D crystal should correspond c to an excited state of a Bose system. The wave function Ψ0 of a zero-temperature 3D Bose c crystal is proposed for zero boundary conditions. Apparently, such Ψ0 corresponds to a local minimum of energy (absolute minimum corresponds to a liquid). Those properties yield the possibility of existence of superfluid liquid H2, Ne, Ar, and other inert elements. We propose several possible experimental ways of obtaining them. Keywords: Bose crystal; ground state; degeneracy; superfluidity. 1 Introduction In the Nature, liquids usually crystallize at the cooling. This leads to the natural commonly arXiv:2010.04070v2 [cond-mat.other] 17 Aug 2021 accepted assumption that the lowest state of a dense three-dimensional (3D) Bose system corresponds to a crystal.
    [Show full text]
  • Lunar Nautics: Designing a Mission to Live and Work on the Moon
    National Aeronautics and Space Administration Lunar Nautics: Designing a Mission to Live and Work on the Moon An Educator’s Guide for Grades 6–8 Educational Product Educator’s Grades 6–8 & Students EG-2008-09-129-MSFC i ii Lunar Nautics Table of Contents About This Guide . 1 Sample Agendas . 4 Master Supply List . 10 Survivor: SELENE “The Lunar Edition” . 22 The Never Ending Quest . 23 Moon Match . 25 Can We Take it With Us? . 27 Lunar Nautics Trivia Challenge . 29 Lunar Nautics Space Systems, Inc. ................................................. 31 Introduction to Lunar Nautics Space Systems, Inc . 32 The Lunar Nautics Proposal Process . 34 Lunar Nautics Proposal, Design and Budget Notes . 35 Destination Determination . 37 Design a Lunar Lander . .38 Science Instruments . 40 Lunar Exploration Science . 41 Design a Lunar Miner/Rover . 47 Lunar Miner 3-Dimensional Model . 49 Design a Lunar Base . 50 Lunar Base 3-Dimensional Model . 52 Mission Patch Design . 53 Lunar Nautics Presentation . 55 Lunar Exploration . 57 The Moon . 58 Lunar Geology . 59 Mining and Manufacturing on the Moon . 63 Investigate the Geography and Geology of the Moon . 70 Strange New Moon . 72 Digital Imagery . 74 Impact Craters . 76 Lunar Core Sample . 79 Edible Rock Abrasion Tool . 81 i Lunar Missions ..................................................................83 Recap: Apollo . 84 Stepping Stone to Mars . 88 Investigate Lunar Missions . 90 The Pioneer Missions . 92 Edible Pioneer 3 Spacecraft . .96 The Clementine Mission . .98 Edible Clementine Spacecraft . .99 Lunar Rover . 100 Edible Lunar Rover . 101 Lunar Prospector . 103 Edible Lunar Prospector Spacecraft . 107 Lunar Reconnaissance Orbiter . 109 Robots Versus Humans . 11. 1 The Definition of a Robot .
    [Show full text]
  • Bulk Mineralogy of Lunar Crater Central Peaks Via Thermal Infrared Spectra from the Diviner Lunar Radiometer - a Study of the Moon’S Crustal Composition at Depth
    Bulk mineralogy of Lunar crater central peaks via thermal infrared spectra from the Diviner Lunar Radiometer - A study of the Moon’s crustal composition at depth Eugenie Song A thesis submitted in partial fulfillment of the requirements for the degree of Master of Sciences University of Washington 2012 Committee: Joshua Bandfield Alan Gillespie Bruce Nelson Program Authorized to Offer Degree: Earth and Space Sciences 1 Table of Contents List of Figures ............................................................................................................................................... 3 List of Tables ................................................................................................................................................ 3 Abstract ......................................................................................................................................................... 4 1 Introduction .......................................................................................................................................... 5 1.1 Formation of the Lunar Crust ................................................................................................... 5 1.2 Crater Morphology ................................................................................................................... 7 1.3 Spectral Features of Rock-Forming Silicates in the Lunar Environment ................................ 8 1.4 Compositional Studies of Lunar Crater Central Peaks ...........................................................
    [Show full text]