Transformations for FIR and IIR Filters' Design

Total Page:16

File Type:pdf, Size:1020Kb

Transformations for FIR and IIR Filters' Design S S symmetry Article Transformations for FIR and IIR Filters’ Design V. N. Stavrou 1,*, I. G. Tsoulos 2 and Nikos E. Mastorakis 1,3 1 Hellenic Naval Academy, Department of Computer Science, Military Institutions of University Education, 18539 Piraeus, Greece 2 Department of Informatics and Telecommunications, University of Ioannina, 47150 Kostaki Artas, Greece; [email protected] 3 Department of Industrial Engineering, Technical University of Sofia, Bulevard Sveti Kliment Ohridski 8, 1000 Sofia, Bulgaria; mastor@tu-sofia.bg * Correspondence: [email protected] Abstract: In this paper, the transfer functions related to one-dimensional (1-D) and two-dimensional (2-D) filters have been theoretically and numerically investigated. The finite impulse response (FIR), as well as the infinite impulse response (IIR) are the main 2-D filters which have been investigated. More specifically, methods like the Windows method, the bilinear transformation method, the design of 2-D filters from appropriate 1-D functions and the design of 2-D filters using optimization techniques have been presented. Keywords: FIR filters; IIR filters; recursive filters; non-recursive filters; digital filters; constrained optimization; transfer functions Citation: Stavrou, V.N.; Tsoulos, I.G.; 1. Introduction Mastorakis, N.E. Transformations for There are two types of digital filters: the Finite Impulse Response (FIR) filters or Non- FIR and IIR Filters’ Design. Symmetry Recursive filters and the Infinite Impulse Response (IIR) filters or Recursive filters [1–5]. 2021, 13, 533. https://doi.org/ In the non-recursive filter structures the output depends only on the input, and in the 10.3390/sym13040533 recursive filter structures the output depends both on the input and on the previous outputs. The Recursive filters have been employed in science and technology for issues like signal Academic Editors: processing, control signals, radar signals, astronomy signals, medical image processing Basil Papadopoulos and Theodore and x-ray enhancements, among others. The Non-Recursive filters are almost everywhere E. Simos in applications where phase linearity has to be ensured. FIR filters are the best choice for Received: 14 December 2020 applications like adaptive filters, averaging filters, speech analysis, spatial beamforming Accepted: 18 March 2021 (spatial filtering), and multirate signal processing, among others. Published: 25 March 2021 In this paper, methods like the Windows and the Bilinear Transformation method have been used to design FIR and IIR digital filters. The design approaches for the case of Publisher’s Note: MDPI stays neutral 2-D IIR filters are based on (a) appropriate 1-D filters and on (b) appropriate optimization with regard to jurisdictional claims in techniques [6–11]. published maps and institutional affil- iations. 2. Finite Impulse Response Filters and Infinite Impulse Response Filters Finite impulse response (FIR) filters and infinite impulse response (IIR) filters are broadly used in signal processing studies and industrial applications. The FIR filter is a filter whose impulse response has a finite duration as a result of settling to zero in finite Copyright: © 2021 by the authors. time. On the other hand, the impulse response of the IIR filter has aninfinite duration due Licensee MDPI, Basel, Switzerland. to the existence of a feedback in the filter [1,2]. This article is an open access article The aforementioned filters can be categorized with respect to the frequency range distributed under the terms and which can pass through them (lowpass, highpass, bandpass and bandstop filters). The ideal conditions of the Creative Commons frequency response D(!) for the cases of lowpass, highpass, bandpass and bandstop filters Attribution (CC BY) license (https:// is presented in Figure1. In the next sections, we describe methods used to design FIR and creativecommons.org/licenses/by/ IIR filters. More specifically, the transfer functions for some filters of special importance e.g., 4.0/). Symmetry 2021, 13, 533. https://doi.org/10.3390/sym13040533 https://www.mdpi.com/journal/symmetry Symmetry 2021, 13, x FOR PEER REVIEW 2 of 10 Symmetry 2021, 13, 533 2 of 9 design FIR and IIR filters. More specifically, the transfer functions for some filters of spe- cial importancehighpass e.g., filtershighpass and filters lowpass and filters lowpass have filters beenstudied have been and havestudied shown and theirhave dependence shown their ondependence system parameters on system (frequencyparameters and (frequency attenuation, and attenuation, among others). among others). Figure 1. Ideal digital filters. Figure 1. Ideal digital filters. 2.1. FIR Filters2.1. FIR Filters The WindowThe method, Window the method,Kaiser Window the Kaiser method, Window the method,Frequency the Sampling Frequency method, Sampling method, the Weightedthe least Weighted squares least design squares and the design Parks–McClellan and the Parks–McClellan method, among method, other among meth- other meth- ods [1,2], areods the [most1,2], arecommonly the most used commonly methods used to design methods digital to design FIR filters. digital The FIR Window filters. The Window methods (Idealmethods filters, (Ideal Rectangular filters, RectangularWindow and Window Hamming and Window Hamming [1]) Window are the simplest [1]) are the simplest methods formethods designing for FIR designing digital filters. FIR digital Here, filters. the design Here, of the FIR design with ofsimple FIRwith frequency simple frequency response shapesresponse filters shapes is presented. filters is The presented. ideal frequency The ideal response frequency D response(ω) is periodicD(!) is in periodic in ! π ω with2 periodπ 2 as shown in Figure1. The Discrete-Time Fourier Transform (DTFT) and the with periodinverse DTFT as shown relationships in Figure are 1. usedThe Disc to estimaterete-Time the Fourier impulse Transform response (DTFT) d = (k) as and the inverse DTFT relationships are used to estimate the impulse response d = (k) ¥ as − ! D(!) = ∑ d(k)e j k , ∞ k=−¥ π (1) D()ω = d(k) e − jRωk D⇔(!)e−j!k d(k) = 2π d! k=−∞ −π π (1) D()ω e − jωk After some algebra,d(k) the= final form ofthe dω impulse response is π −π 2 ej!ck − e−j!ck d(k) = (2) After some algebra, the final form of the impulse response2πjk is ω − ω and, as a result, the impulse responsese j ck − e forj theck ideal FIR filters are given as d(k) = π (2) 8 sin(! k) 2 jk > c with −¥ < k < ¥ (lowpass filter) > πk and, as a result, the impulse<> responsesδ for sinthe(! idealck) FIR filters are given as (k) − πk with −¥ < k < ¥ (highpass filter) d(k) = sin(! k)−sin(! k) (3) > b α with −¥ < k < ¥ (bandpass filter) > πk :> δ sin(!bk)−sin(!αk) (k) − πk with −¥ < k < ¥ (bandpass filter) Symmetry 2021, 13, 533 3 of 9 It is worth mentioning that for the same cutoff frequencies the lowpass/highpass filters and bandpass/bandstop filters are complementary [1], which can be useful for graphic equalizers and loudspeaker cross-over networks. 2.2. IIR Filters The bilinear transformation method is commonly used to design IIR digital filters. This method maps the digital filter into an equivalent analog filter, which can be designed by using one of the well-developed analog filter design methods, such as Butterworth, Chebyshev, or elliptic filter designs. Considering a map of the form s = f(z), (4) where “s” and “z” present the planes of analog filter and digital filter, respectively, the bilinear transformation can be written as 1 − z−1 s = , (5) 1 + z−1 with s = jW and z = ej! (! and W are the digital frequency and the equivalent analog frequency, respectively). The digital frequency and the analog frequency are connected via the following relation ! W = tan (6) 2 Here, we present the transfer function of the first-order lowpass filter. The general form of the transfer function is written as b + b z−1 ( ) = 0 1 H z −1 (7) 1 + α1z The final form of the transfer function for a first-order lowpass filter and the appropri- ate coefficients are given as −1 H(z) = b 1+z 1−αz−1 2 −AC/10 Gc = 10 where Ac is the attenuation (dB) ! (8) α = pGc c 2 tan 2 1−Gc 1−α s α = 1+α ,Hα(s) = s+α For the case of first-order highpass digital filters, the transfer function is given as s Hα(s) = (9) s + α Using the bilinear transformation [1] 1 − z−1 s = (10) 1 + z−1 the transfer function gets the form 1 − z−1 H(z) = b , (11) 1 − αz−1 where the coefficients have the form 1 − α 1 + α α = , b = (12) 1 + α 2 Symmetry 2021, 13, 533 4 of 9 2 Example 1. Let us consider a lowpass filter operating at 10 kHz, with Gc = 0.5 (3-dB frequency is 1 kHz). 2πfc 2π 1 kHz !c = = = 0.5π rads/sample fs 10 kHz ! W = c = 0.3249 c 2 The other coefficients in Equation (8) get the values Gc !c α = q tan = 0.3249 2 2 1 − Gc α = 0.5095 and b = 0.2453. As a result, the transfer function gets the form 1 + z−1 H(z) = 0.2453 1 − 0.5095z−1 2 Following the same procedure, for the case of Gc = 0.9, the transfer function is given by the following form 1 + z−1 H(z) = 0.4936 1 − 0.0128z−1 The magnitude response of the designed filters (lowpass and highpass filters) are presented in Figures2 and3, respectively. As it is shown, the transfer function for both the Symmetry 2021, 13, x FOR PEER REVIEW 5 of 10 first-order lowpass and the first-order highpass filters depends strongly on the parameters 2 !c and Gc. FigureFigure 2. 2. TheThe transfer transfer function function for for first-orderfirst-order lowpass lowpass digitaldigital filters filters as as a a function function of of frequency.
Recommended publications
  • Moving Average Filters
    CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. However, the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple- pass moving average. These have slightly better performance in the frequency domain, at the expense of increased computation time. Implementation by Convolution As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written: EQUATION 15-1 Equation of the moving average filter. In M &1 this equation, x[ ] is the input signal, y[ ] is ' 1 % y[i] j x [i j ] the output signal, and M is the number of M j'0 points used in the moving average. This equation only uses points on one side of the output sample being calculated. Where x[ ] is the input signal, y[ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: x [80] % x [81] % x [82] % x [83] % x [84] y [80] ' 5 277 278 The Scientist and Engineer's Guide to Digital Signal Processing As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: x[78] % x[79] % x[80] % x[81] % x[82] y[80] ' 5 This corresponds to changing the summation in Eq.
    [Show full text]
  • Discrete-Time Fourier Transform 7
    Table of Chapters 1. Overview of Digital Signal Processing 2. Review of Analog Signal Analysis 3. Discrete-Time Signals and Systems 4. Sampling and Reconstruction of Analog Signals 5. z Transform 6. Discrete-Time Fourier Transform 7. Discrete Fourier Series and Discrete Fourier Transform 8. Responses of Digital Filters 9. Realization of Digital Filters 10. Finite Impulse Response Filter Design 11. Infinite Impulse Response Filter Design 12. Tools and Applications Chapter 1: Overview of Digital Signal Processing Chapter Intended Learning Outcomes: (i) Understand basic terminology in digital signal processing (ii) Differentiate digital signal processing and analog signal processing (iii) Describe basic digital signal processing application areas H. C. So Page 1 Signal: . Anything that conveys information, e.g., . Speech . Electrocardiogram (ECG) . Radar pulse . DNA sequence . Stock price . Code division multiple access (CDMA) signal . Image . Video H. C. So Page 2 0.8 0.6 0.4 0.2 0 vowel of "a" -0.2 -0.4 -0.6 0 0.005 0.01 0.015 0.02 time (s) Fig.1.1: Speech H. C. So Page 3 250 200 150 100 ECG 50 0 -50 0 0.5 1 1.5 2 2.5 time (s) Fig.1.2: ECG H. C. So Page 4 1 0.5 0 -0.5 transmitted pulse -1 0 0.2 0.4 0.6 0.8 1 time 1 0.5 0 -0.5 received pulse received t -1 0 0.2 0.4 0.6 0.8 1 time Fig.1.3: Transmitted & received radar waveforms H. C. So Page 5 Radar transceiver sends a 1-D sinusoidal pulse at time 0 It then receives echo reflected by an object at a range of Reflected signal is noisy and has a time delay of which corresponds to round trip propagation time of radar pulse Given the signal propagation speed, denoted by , is simply related to as: (1.1) As a result, the radar pulse contains the object range information H.
    [Show full text]
  • Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks
    NATIONAL Application Note 097 INSTRUMENTS® The Software is the Instrument ® Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks Introduction The importance of digital filters is well established. Digital filters, and more generally digital signal processing algorithms, are classified as discrete-time systems. They are commonly implemented on a general purpose computer or on a dedicated digital signal processing (DSP) chip. Due to their well-known advantages, digital filters are often replacing classical analog filters. In this application note, we introduce a new digital filter design and analysis tool implemented in LabVIEW with which developers can graphically design classical IIR and FIR filters, interactively review filter responses, and save filter coefficients. In addition, real-world filter testing can be performed within the digital filter design application using a plug-in data acquisition board. Digital Filter Design Process Digital filters are used in a wide variety of signal processing applications, such as spectrum analysis, digital image processing, and pattern recognition. Digital filters eliminate a number of problems associated with their classical analog counterparts and thus are preferably used in place of analog filters. Digital filters belong to the class of discrete-time LTI (linear time invariant) systems, which are characterized by the properties of causality, recursibility, and stability. They can be characterized in the time domain by their unit-impulse response, and in the transform domain by their transfer function. Obviously, the unit-impulse response sequence of a causal LTI system could be of either finite or infinite duration and this property determines their classification into either finite impulse response (FIR) or infinite impulse response (IIR) system.
    [Show full text]
  • Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli
    Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli 1 • FIR Filter Design Problem Given H(z) or H(ejw), find filter coefficients {b0, b1, b2, ….. bN-1} which are equal to {h0, h1, h2, ….hN-1} in the case of FIR filters. 1 z-1 z-1 z-1 z-1 x[n] h0 h1 h2 h3 hN-2 hN-1 1 1 1 1 1 y[n] Consider a general (infinite impulse response) definition: ¥ H (z) = å h[n] z-n n=-¥ 2 From complex variable theory, the inverse transform is: 1 n -1 h[n] = ò H (z)z dz 2pj C Where C is a counterclockwise closed contour in the region of convergence of H(z) and encircling the origin of the z-plane • Evaluating H(z) on the unit circle ( z = ejw ) : ¥ H (e jw ) = åh[n]e- jnw n=-¥ 1 p h[n] = ò H (e jw )e jnwdw where dz = jejw dw 2p -p 3 • Design of an ideal low pass FIR digital filter H(ejw) K -2p -p -wc 0 wc p 2p w Find ideal low pass impulse response {h[n]} 1 p h [n] = H (e jw )e jnwdw LP ò 2p -p 1 wc = Ke jnwdw 2p ò -wc Hence K h [n] = sin(nw ) n = 0, ±1, ±2, …. ±¥ LP np c 4 Let K = 1, wc = p/4, n = 0, ±1, …, ±10 The impulse response coefficients are n = 0, h[n] = 0.25 n = ±4, h[n] = 0 = ±1, = 0.225 = ±5, = -0.043 = ±2, = 0.159 = ±6, = -0.053 = ±3, = 0.075 = ±7, = -0.032 n = ±8, h[n] = 0 = ±9, = 0.025 = ±10, = 0.032 5 Non Causal FIR Impulse Response We can make it causal if we shift hLP[n] by 10 units to the right: K h [n] = sin((n -10)w ) LP (n -10)p c n = 0, 1, 2, ….
    [Show full text]
  • Signals and Systems Lecture 8: Finite Impulse Response Filters
    Signals and Systems Lecture 8: Finite Impulse Response Filters Dr. Guillaume Ducard Fall 2018 based on materials from: Prof. Dr. Raffaello D’Andrea Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard 1 / 46 Outline 1 Finite Impulse Response Filters Definition General Properties 2 Moving Average (MA) Filter MA filter as a simple low-pass filter Fast MA filter implementation Weighted Moving Average Filter 3 Non-Causal Moving Average Filter Non-Causal Moving Average Filter Non-Causal Weighted Moving Average Filter 4 Important Considerations Phase is Important Differentiation using FIR Filters Frequency-domain observations Higher derivatives G. Ducard 2 / 46 Finite Impulse Response Filters Moving Average (MA) Filter Definition Non-Causal Moving Average Filter General Properties Important Considerations Outline 1 Finite Impulse Response Filters Definition General Properties 2 Moving Average (MA) Filter MA filter as a simple low-pass filter Fast MA filter implementation Weighted Moving Average Filter 3 Non-Causal Moving Average Filter Non-Causal Moving Average Filter Non-Causal Weighted Moving Average Filter 4 Important Considerations Phase is Important Differentiation using FIR Filters Frequency-domain observations Higher derivatives G. Ducard 3 / 46 Finite Impulse Response Filters Moving Average (MA) Filter Definition Non-Causal Moving Average Filter General Properties Important Considerations FIR filters : definition The class of causal, LTI finite impulse response (FIR) filters can be captured by the difference equation M−1 y[n]= bku[n − k], Xk=0 where 1 M is the number of filter coefficients (also known as filter length), 2 M − 1 is often referred to as the filter order, 3 and bk ∈ R are the filter coefficients that describe the dependence on current and previous inputs.
    [Show full text]
  • Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.014752 Article Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation Dah-Jing Jwo1, *, Wei-Yeh Chang1 and I-Hua Wu2 1Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung, 202-24, Taiwan 2Innovative Navigation Technology Ltd., Kaohsiung, 801, Taiwan *Corresponding Author: Dah-Jing Jwo. Email: [email protected] Received: 01 October 2020; Accepted: 08 November 2020 Abstract: This paper revisits the characteristics of windowing techniques with various window functions involved, and successively investigates spectral leak- age mitigation utilizing the Welch method. The discrete Fourier transform (DFT) is ubiquitous in digital signal processing (DSP) for the spectrum anal- ysis and can be efciently realized by the fast Fourier transform (FFT). The sampling signal will result in distortion and thus may cause unpredictable spectral leakage in discrete spectrum when the DFT is employed. Windowing is implemented by multiplying the input signal with a window function and windowing amplitude modulates the input signal so that the spectral leakage is evened out. Therefore, windowing processing reduces the amplitude of the samples at the beginning and end of the window. In addition to selecting appropriate window functions, a pretreatment method, such as the Welch method, is effective to mitigate the spectral leakage. Due to the noise caused by imperfect, nite data, the noise reduction from Welch’s method is a desired treatment. The nonparametric Welch method is an improvement on the peri- odogram spectrum estimation method where the signal-to-noise ratio (SNR) is high and mitigates noise in the estimated power spectra in exchange for frequency resolution reduction.
    [Show full text]
  • Exploring Anti-Aliasing Filters in Signal Conditioners for Mixed-Signal, Multimodal Sensor Conditioning by Arun T
    Texas Instruments Incorporated Amplifiers: Op Amps Exploring anti-aliasing filters in signal conditioners for mixed-signal, multimodal sensor conditioning By Arun T. Vemuri Systems Architect, Enhanced Industrial Introduction Figure 1. Multimodal, mixed-signal sensor-signal conditioner Some sensor-signal conditioners are used to process the output Analog Digital of multiple sense elements. This Domain Domain processing is often provided by multimodal, mixed-signal condi- tioners that can handle the out- puts from several sense elements Sense Digital Amplifier 1 ADC 1 at the same time. This article Element 1 Filter 1 analyzes the operation of anti- Processed aliasing filters in such sensor- Intelligent Output Compensation signal conditioners. Sense Digital Basics of sensor-signal Amplifier 2 ADC 2 Element 2 Filter 2 conditioners Sense elements, or transducers, convert a physical quantity of interest into electrical signals. Examples include piezo resistive bridges used to measure pres- sure, piezoelectric transducers used to detect ultrasonic than one sense element is processed by the same signal waves, and electrochemical cells used to measure gas conditioner is called multimodal signal conditioning. concentrations. The electrical signals produced by sense Mixed-signal signal conditioning elements are small and exhibit nonidealities, such as tem- Another aspect of sensor-signal conditioning is the electri- perature drifts and nonlinear transfer functions. cal domain in which the signal conditioning occurs. TI’s Sensor analog front ends such as the Texas Instruments PGA309 is an example of a device where the signal condi- (TI) LMP91000 and sensor-signal conditioners such as TI’s tioning of resistive-bridge sense elements occurs in the PGA400/450 are used to amplify the small signals produced analog domain.
    [Show full text]
  • System Identification and Power Spectrum Estimation
    182 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-27, NO. 2, APRIL 1979 Short-TimeFourier Analysis Techniques for FIR System Identification and Power Spectrum Estimation LAWRENCER. RABINER, FELLOW, IEEE, AND JONT B. ALLEN, MEMBER, IEEE Abstract—A wide variety of methods have been proposed for system F[çb] modeling and identification. To date, the most successful of these L = length of w(n) methods have been time domain procedures such as least squares analy- sis, or linear prediction (ARMA models). Although spectral techniques N= length ofDFTF[] have been proposed for spectral estimation and system identification, N' = number of data points the resulting spectral and system estimates have always been strongly N1 = lower limit on sum affected by the analysis window (biased estimates), thereby reducing N7 upper limit on sum the potential applications of this class of techniques. In this paper we M = length of h propose a novel short-time Fourier transform analysis technique in M = estimate of M which the influences of the window on a spectral estimate can essen- tially be removed entirely (an unbiased estimator) by linearly combin- h(n) = systems impulse response ing biased estimates. As a result, section (FFT) lengths for analysis can h(n) = estimate of h(n) be made as small as possible, thereby increasing the speed of the algo- F[.] = Fourier transform operator rithm without sacrificing accuracy. The proposed algorithm has the F'' [] = inverse Fourier transform important property that as the number of samples used in the estimate q1 = number of 0 diagonals below main increases, the solution quickly approaches the least squares (theoreti- cally optimum) solution.
    [Show full text]
  • Digital Signal Processing Filter Design
    2065-27 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Digital Signal Processing Filter Design Massimiliano Nolich DEEI Facolta' di Ingegneria Universita' degli Studi di Trieste via Valerio, 10, 34127 Trieste Italy Filter design 1 Design considerations: a framework |H(f)| 1 C ıp 1 ıp ıs f 0 fp fs Passband Transition Stopband band The design of a digital filter involves five steps: Specification: The characteristics of the filter often have to be specified in the frequency domain. For example, for frequency selective filters (lowpass, highpass, bandpass, etc.) the specification usually involves tolerance limits as shown above. Coefficient calculation: Approximation methods have to be used to calculate the values hŒk for a FIR implementation, or ak, bk for an IIR implementation. Equivalently, this involves finding a filter which has H.z/ satisfying the requirements. Realisation: This involves converting H.z/ into a suitable filter structure. Block or flow diagrams are often used to depict filter structures, and show the computational procedure for implementing the digital filter. 1 Analysis of finite wordlength effects: In practice one should check that the quantisation used in the implementation does not degrade the performance of the filter to a point where it is unusable. Implementation: The filter is implemented in software or hardware. The criteria for selecting the implementation method involve issues such as real-time performance, complexity, processing requirements, and availability of equipment. 2 Finite impulse response (FIR) filter design A FIR filter is characterised by the equations N 1 yŒn D hŒkxŒn k kXD0 N 1 H.z/ D hŒkzk: kXD0 The following are useful properties of FIR filters: They are always stable — the system function contains no poles.
    [Show full text]
  • Digital Filter Design Digital Filter Specifications Digital Filter
    Digital Filter Design Digital Filter Specifications • Usually, either the magnitude and/or the • Objective - Determination of a realizable phase (delay) response is specified for the transfer function G(z) approximating a design of digital filter for most applications given frequency response specification is an important step in the development of a • In some situations, the unit sample response digital filter or the step response may be specified • If an IIR filter is desired, G(z) should be a • In most practical applications, the problem stable real rational function of interest is the development of a realizable approximation to a given magnitude • Digital filter design is the process of response specification deriving the transfer function G(z) Copyright © 2001, S. K. Mitra Copyright © 2001, S. K. Mitra Digital Filter Specifications Digital Filter Specifications • We discuss in this course only the • As the impulse response corresponding to magnitude approximation problem each of these ideal filters is noncausal and • There are four basic types of ideal filters of infinite length, these filters are not with magnitude responses as shown below realizable j j HLP(e ) HHP(e ) • In practice, the magnitude response 1 1 specifications of a digital filter in the passband and in the stopband are given with – 0 c c – c 0 c j j HBS(e ) HBP (e ) some acceptable tolerances –1 1 • In addition, a transition band is specified between the passband and stopband – – c2 c1 c1 c2 – c2 – c1 c1 c2 Copyright © 2001, S. K. Mitra Copyright © 2001, S. K. Mitra Digital Filter Specifications Digital Filter Specifications ω • For example, the magnitude response G(e j ) • As indicated in the figure, in the passband, ≤ ω ≤ ω of a digital lowpass filter may be given as defined by 0 p , we require that jω ≅ ±δ indicated below G(e ) 1 with an error p , i.e., −δ ≤ jω ≤ +δ ω ≤ ω 1 p G(e ) 1 p , p ω ≤ ω ≤ π •In the stopband, defined by s , we jω ≅ δ require that G ( e ) 0 with an error s , i.e., jω ≤ δ ω ≤ ω ≤ π G(e ) s , s Copyright © 2001, S.
    [Show full text]
  • Lecture 15- Impulse Reponse and FIR Filter
    In this lecture, we will learn about: If we apply an impulse at the input of a system, the output response is known as the 1. Impulse response of a discrete system and what it means. system’s impulse response: h(t) for continuous time, and h[n] of discrete time. 2. How impulse response can be used to determine the output of the system given We have demonstrated in Lecture 3 that the Fourier transform of a unit impulse is a its input. constant (of 1), meaning that an impulse contains ALL frequency components. 3. The idea behind convolution. Therefore apply an impulse to the input of a system is like applying ALL frequency 4. How convolution can be applied to moving average filter and why it is called a signals to the system simultaneously. Finite Impulse Response (FIR) filter. Furthermore, since integrating a unit impulse gives us a unit step, we can integrate 5. Frequency spectrum of the moving average filter the impulse response of a system, and we can obtain it’s step response. 6. The idea of recursive or Infinite Impulse Response (IIR) filter. In other words, the impulse response of a system completely specify and I will also introduce two new packages for the Segway proJect: characterise the response of the system. 1. mic.py – A Python package to capture data from the microphone So here are two important lessons: 2. motor.py – A Python package to drive the motors 1. Impulse response h(t) or h[n] characterizes a system in the time-domain.
    [Show full text]
  • Designing Linear-Phase Digital Differentiators a Novel
    DESIGNING LINEAR-PHASE DIGITAL DIFFERENTIATORS A NOVEL APPROACH Ewa Hermanowicz Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk, Poland phone: + (48) 058 3472870, fax: + (48) 058 3472870, email: [email protected] ABSTRACT H (e jω ) = ( jω)k exp(− jωN / 2), ω < π (1) In this paper two methods of designing efficiently a digital k linear-phase differentiator of an arbitrary degree of where k=1,2,… and the frequency response differentiation are proposed. The first one utilizes a symbolic N expression for the coefficients of a generic fractional delay jω − jωn filter and is based on a fundamental relationship between the H k,N (e ) = ∑hk,N [n]e , ω < π (2) coefficients of a digital differentiator and the coefficients of n=0 the generic FD filter. The second profits from one of the of the approximating FIR of order N, i.e. crucial attributes of the structure invented by Farrow for FD jω jω jω filters. It lies in an alternate symmetry and anti-symmetry of Ek,N (e ) = H k (e ) − H k,N (e ) . In (1) N/2 stands for sub-filters which are linear-phase differentiators. The the “transport” delay inevitable in the target FIR. proposed design methods are illustrated by examples. Some Obviously, one can continue the process of deriving practical remarks concerning the usage of the Farrow closed form formulae for the DDk coefficients with higher structure are also included. degree of differentiation, i.e. for k>2. But the value of such formulae would be rather of theoretical nature.
    [Show full text]