Laminin-Binding Integrin A7,1: Functional Characterization and Expression in Normal and Malignant Melanocytes

Total Page:16

File Type:pdf, Size:1020Kb

Laminin-Binding Integrin A7,1: Functional Characterization and Expression in Normal and Malignant Melanocytes CELL REGULATION, Vol. 2, 805-817, October 1991 Laminin-binding integrin a7,1: functional characterization and expression in normal and malignant melanocytes Randall H. Kramer,*t$ Mai P. Vu,* increased attachment to laminin exhibit much Yao-Fen Cheng,* Daniel M. Ramos,* higher metastatic potential in lung colonization Rupert Timpl,§ and Nahid Waleh 11 assays (reviewed in Liotta et aL, 1986). Fur- *Departments of Stomatology and Anatomy thermore, the presence of intact laminin will en- and the tCardiovascular Research Institute hance lung colonization (Barsky et aL., 1984). University of California These results and others strongly suggest that San Francisco, California 94143 melanoma cells interact with laminin-rich base- §Max-Planck-lnstitut fur Biochemie ment membrane and that this interaction facil- Martinsried, Germany itates their vascular arrest and colonization of IISRI International distant sites. Menlo Park, California 94025 During tissue invasion, metastatic melanoma cells interact with different types of extracellular matrix, including the interstitium and basement A novel integrin, a,#,, that specifically binds with membranes. It is expected, then, that these high affinity to laminin has been identified on mel- malignant cells will express surface adhesion anoma cells. This complex was purified from both receptors with diverse ligand specificities human and murine melanoma cells by laminin-af- (Ruoslahti and Giancotti, 1989). The integrin finity chromatography, and the a7 subunit was re- family of adhesion receptors consists of a large covered after gel electrophoresis. N-terminal amino number of heterodimer receptors that appear acid sequence analysis of the a7 subunit from both to mediate many of the cell-extracellular matrix human and mouse cells verifies that this integrin interactions for melanoma and other cell types is distinct from other a chains in the #I family, al- (Hynes, 1987; Ruoslahti and Pierschbacher, though strikingly similar to the as subunit. By using 1987; Albelda and Buck, 1990; Hemler, 1990). specific proteolytically derived fragments of lami- The combination of individual a and : integrin nin, it was determined that the a7f1 complex binds subunits into complexes allows for a large num- selectively to the E8 region, which represents part ber of potential receptor structures (Ruoslahti, of the long arm of laminin. In contrast, the receptor 1991). Because the ligand-binding specificity of failed to bind to the P1 fragment, which contains each individual heterodimer is determined by the intersection of the short arms of laminin. Al- contributions from both subunits, the multiplic- though the a7,,1 complex was commonly expressed ity of combinations provides for considerable in melanoma cells, this integrin was not detected diversity of function. Of the integrin receptors in normal melanocytes, suggesting that a7 expres- so far identified, many are involved in interac- sion may be associated with malignant transfor- tions between cells and extracellular matrix, mation. These results establish the existence of a whereas some also mediate cell-cell adhesion novel integrin that binds to the E8 domain of laminin (Springer, 1990). and appears to mediate cell adhesion to this ligand. Multiple cell attachment sites have been identified in laminin (Timpl et al., 1990). The long- arm fragment E8 of laminin produced by elas- Introduction tase digestion has been shown to be the binding site for both the ai3f1 (Gehlsen et aL., 1989) and Receptors for laminin have been implicated in the a611 (Aumailley et aL, 1990b; Hall et aL., melanoma metastasis. Liotta and collaborators 1990; Sonnenberg et aL., 1990) integrins. The have shown that melanoma cells selected for a1fl1 integrin appears to bind to the cross region of laminin represented by the P1 fragment : Corresponding author. (Forsberg et aL., 1990; Hall et aL., 1990). The 0V,3 © 1991 by The American Society for Cell Biology 805 R.H. Kramer et al. integrins are important in metastasis and in- vasion. For example, RGD peptides, to which I several integrins bind, block invasion through the extracellular matrix (Gehlsen et al., 1988) -A- - and inhibit tumor metastasis (Humphries et al., ] ,~> 1988). Giancotti and Ruoslahti (1990) found that la... W j o overexpression of the fibronectin receptor (a5fll) 13. induced major changes in cell behavior. The ov- ,, _ erexpressor cells migrated less than control J] ct cells. Furthermore, the overexpressor cells, in contrast to the control cells, did not grow well l7 in soft agar and failed to form tumors in nude mice. Similarly, cells deficient in this receptor were more tumorigenic (Schreiner et al., 1991). I These results suggest that levels of integrin expression can directly modulate not only cell adhesion and migration but also cell growth. 48 - Previously, we reported that human mela- 1 L. noma cells express a unique af31 integrin com- 41 3 4 5 plex that bound to laminin yet was biochemically distinct from all known a subunits (Kramer et Figure 1. Cell-surface proteins eluted from laminin- al., 1989b). In the present study, we have pu- Sepharose column. 1251-labeled Kl 735 melancDma cells were rified the human receptor as well as the mouse extracted with starting buffer, and the extracct was applied hom to a laminin-Sepharose column as describei!din Materials ologue, and because the a subunit has a and methods. After a washing with starting tbuffer, the col- unique N-terminal amino acid sequence it is re- umn was eluted with 250 mM NaCI (lanes 1--3) followed by ferred to as aC7. We also have established that elution with 10 mM EDTA (lanes 4-5). Fracttions were an- the a7f1 complex binds to the E8 fragment of alyzed by SDS-PAGE under nonreducing (left panel) and re- ducing (right panel) conditions. EDTA eluted laminin. Furthermore, the receptor is not de- -120 kDa (lane 4) with a minor band (a7) at 125 kDa (non- tectable in human melanocytes, suggesting that reducing conditions), which after reduction miigrated at 130 its expression may be linked to the transformed kDa (00) and 95 kDa (a7). phenotype. Results integrin also binds to laminin (Kramer et al., 1 990b). In addition, a cryptic Arg-Gly-Asp(RGD)- Purification and N-terminal amino acid dependent site for aC%3 is generated in the P1 sequence of thea7 subunit fragment (Aumailley et aL, 1 990a; Sonnenberg Ligand-affinity chromatography on laminin- et al., 1990). The a2f1 integrin also binds laminin Sepharose was used to purify the novel human (Elices and Hemler, 1989; Languino et a/., 1989; and mouse melanoma laminin receptor (al1) Kramer et al., 1990), although the specific bind- essentially as described previously (Kramer et ing site on laminin for this receptor has not as al., 1989b). We now provide descriptive evi- yet been defined. dence that this complex possesses a new a Various studies have attempted to compare subunit, a7. The a731 complex is heavily ex- integrin profiles of normal and malignant cells. pressed on both the human MeWo and mouse From these few early studies it seems that ma- Kl 735 melanoma cell lines. Chromatography on lignant transformation can induce certain laminin-Sepharose columns of detergent ex- changes in integrin expression, but further work tracts of 1251 surface-labeled Kl 735 cells (Figure is needed to define how universal these alter- 1) yielded material that was resistant to elution ations are and how they specifically influence with a 0.25 M salt wash but was quantitatively the cell phenotype. For example, certain tumor recovered by elution with EDTA. As previously cells display a reduced level of f1 integrin shown (Kramer et al., 1 989b), the a7 subunit ex- expression (Peltonen et al., 1989; Plantefaber hibits an apparent molecular mass of about and Hynes, 1989), whereas other tumor cells 120-125 kDa and comigrates with the f31 subunit show an increase in f1 expression after malig- under nonreducing conditions in sodium do- nant transformation (Dedhar and Saulnier, decyl sulfate-polyacrylamide gel electrophoresis 1990). However, other studies demonstrate that (SDS-PAGE). However, after reduction a7 loses 806 CELL REGULATION The melanoma laminin-binding integrin a7fl1 a disulfide-linked 30-kDa fragment (Kramer et A al., 1989b) and migrates at 90-1 00 kDa. The ,B integrin profile of human MeWo mel- anoma cells was determined by subjecting de- tergent extracts of 1251-labeled cells to immu- -a2-6 noprecipitations using monoclonal antibodies , # * -, .0 , against specific integrin a subunits. The a!7 sub- 3 ]&-a7 unit was readily visible as a sharp band in re- I ducing gels after immunoprecipitation with an- tibody to the fI subunit (Figure 2). In contrast, immunoprecipitation with antibodies to a1, a22, a3, a5, and a6 failed to recover the a7 subunit; instead the expected individual a subunits with the associated f,B subunit were recognized by B each antibody. Under reducing conditions, a33, a5, a6, and a7 subunits showed the anticipated increase in electrophoretic mobility as a result -.a-f3-a2 of loss of the C-terminal peptide disulfide-linked -Y - :1 a3-6 fragment; the f,B subunit showed a character- istic decrease in mobility under reducing con- ditions. In the case of a2, a5, and a6 subunits, more than one specific antibody was tested. The MeWo cells were found to express moderate levels of al, a2, a3, and a5 but only minor amounts of a6 and a,4 (not shown). a1 a2 a2a3 a a5aa5a6a6a6 01 For large-scale purifications, extracts from subcutaneous tumors of the mouse Kl 735 mel- anoma or alternatively, extracts from cultured Figure 2. The a7t,0 integrin complex is not cross-reactive melanoma were used as with antibodies specific for the a subunits of other fl in- MeWo cells, starting tegrins. Human MeWo melanoma cells were surface labeled material. Analysis of the EDTA-eluted fractions with 1251 and the detergent extract was subjected to im- in silver- or Coomassie blue-stained SDS-PAGE munoprecipitation with antibody to the indicated a subunits gels gave similar protein band patterns as or to the 3,B subunit.
Recommended publications
  • Altered Integrin Alpha 6 Expression As a Rescue for Muscle Fiber Detachment in Zebrafish (Danio Rerio)
    The University of Maine DigitalCommons@UMaine Honors College Spring 2014 Altered Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio) Rose E. McGlauflin Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Animal Diseases Commons, and the Musculoskeletal Diseases Commons Recommended Citation McGlauflin, Rose E., Alter" ed Integrin Alpha 6 Expression As A Rescue For Muscle Fiber Detachment In Zebrafish (Danio Rerio)" (2014). Honors College. 140. https://digitalcommons.library.umaine.edu/honors/140 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ALTERED INTEGRIN ALPHA 6 EXPRESSION AS A RESCUE FOR MUSCLE FIBER DETACHMENT IN ZEBRAFISH (DANIO RERIO) by Rose E. McGlauflin A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biology) The Honors College University of Maine May 2014 Advisory Committee: Clarissa A. Henry, Ph.D., Associate Professor of Biological Sciences, Advisor Mary S. Tyler, Ph.D., Professor of Zoology Mary Astumian, Henry Lab Manager Michelle Smith, Ph.D., Assistant Professor of Biological Sciences Mark Haggerty, Ph.D., Honors Preceptor for Civic Engagement Abstract Cells adhere to their extracellular matrix by way of integrins, transmembrane molecules that attach the cytoskeleton to the extracellular basement membrane (one kind of extracellular matrix). In some muscular dystrophies, specific integrins are disrupted and muscle fibers detach from the myotendenous junction and degenerate. This integrin disruption causes a constant cycle of regeneration and degeneration, which greatly harms the tissue over time.
    [Show full text]
  • Innate Pro–B-Cell Progenitors Protect Against Type 1 Diabetes By
    Innate pro–B-cell progenitors protect against type 1 PNAS PLUS diabetes by regulating autoimmune effector T cells Ruddy Montandona,b,1, Sarantis Korniotisa,b,1, Esther Layseca-Espinosaa,b,2, Christophe Grasa,b, Jérôme Mégretc, Sophie Ezinea,d, Michel Dya,b, and Flora Zavalaa,b,3 aFaculté de Médecine Site Necker, Université Paris Descartes, bCentre National de la Recherche Scientifique Unité Mixte de Recherche 8147, 75015 Paris, France; cInstitut Fédératif de Recherche 94 Necker-Enfants Malades, 75015 Paris, France; and dInstitut National de la Santé et de la Recherche Médicale U1020, 75015 Paris, France Edited by Simon Fillatreau, Deutsches Rheuma-Forschungszentrum, Berlin, Germany, and accepted by the Editorial Board May 6, 2013 (received for review December 24, 2012) Diverse hematopoietic progenitors, including myeloid populations emergence of regulatory B cells (Bregs), along with acquired-type arising in inflammatory and tumoral conditions and multipotent stimulation, such as B-cell receptor (BCR) engagement concomi- cells, mobilized by hematopoietic growth factors or emerging during tant or not with CD40 activation (10, 11). Such induced regulatory parasitic infections, display tolerogenic properties. Innate immune B-cell functions are believed to be more robust than those ex- stimuli confer regulatory functions to various mature B-cell subsets pressed by naive and resting B cells, which can nevertheless tolerize but immature B-cell progenitors endowed with suppressive proper- naive T cells and induce regulatory T cells (Tregs) (12, 13). ties per se or after differentiating into more mature regulatory Bregs are a heterogeneous lymphocyte subset present among all B cells remain to be characterized. Herein we provide evidence for major B-cell populations (14–17).
    [Show full text]
  • 2335 Roles of Molecules Involved in Epithelial/Mesenchymal Transition
    [Frontiers in Bioscience 13, 2335-2355, January 1, 2008] Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis Giulio Ghersi Dipartimento di Biologia Cellulare e dello Sviluppo, Universita di Palermo, Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Extracellular matrix 3.1. ECM and integrins 3.2. Basal lamina components 4. Cadherins. 4.1. Cadherins in angiogenesis 5. Integrins. 5.1. Integrins in angiogenesis 6. Focal adhesion molecules 7. Proteolytic enzymes 7.1. Proteolytic enzymes inhibitors 7.2. Proteolytic enzymes in angiogenesis 8. Perspective 9. Acknowledgements 10. References 1.ABSTRACT 2. INTRODUCTION Formation of vessels requires “epithelial- Growth of new blood vessels (angiogenesis) mesenchymal” transition of endothelial cells, with several plays a key role in several physiological processes, such modifications at the level of endothelial cell plasma as vascular remodeling during embryogenesis and membranes. These processes are associated with wound healing tissue repair in the adult; as well as redistribution of cell-cell and cell-substrate adhesion pathological processes, including rheumatoid arthritis, molecules, cross talk between external ECM and internal diabetic retinopathy, psoriasis, hemangiomas, and cytoskeleton through focal adhesion molecules and the cancer (1). Vessel formation entails the “epithelial- expression of several proteolytic enzymes, including matrix mesenchymal” transition of endothelial cells (ECs) “in metalloproteases and serine proteases. These enzymes with vivo”; a similar phenotypic exchange can be induced “in their degradative action on ECM components, generate vitro” by growing ECs to low cell density, or in “wound molecules acting as activators and/or inhibitors of healing” experiments or perturbing cell adhesion and angiogenesis. The purpose of this review is to provide an associated molecule functions.
    [Show full text]
  • 2021 Undergraduate Research Symposium Program
    FORDHAM COLLEGE AT ROSE HILL 14TH ANNUAL UNDERGRADUATE RESEARCH SYMPOSIUM Wednesday, May 5, 2021 AN INTERDISCIPLINARY CELEBRATION OF OUR STUDENTS AND MENTORS The Fourteenth Annual Fordham College at Rose Hill Undergraduate Research Symposium Program | Spring 2021 Welcome to the Fourteenth Annual FCRH Research Symposium, for the first time in a hybrid format! The accomplishments of our students and mentors during the pandemic have been extraordinary and we are overjoyed to celebrate them today. From our beautiful campus, to their homes throughout the country and beyond, our undergraduate research community was always open for new discoveries. We are delighted to share 120 abstracts from over 200 students who pursued their projects during such challenging times. Their work, dedication, and determination to be a part of today’s event is inspiring and what FCRH undergraduate research is all about. We are in this together to urge each other on and findings shared today may well change the world. We are also proud to announce that the 11th volume of the Fordham Undergraduate Research Journal has been published. The FURJ team took on an enormous undertaking of running their operation in hybrid format, with a record number of submissions, and as always, they have dazzled us with the quality of their efforts. Undergraduate research has become a part of who we are at FCRH. Because of this, our program, against all odds in the past year, continues to grow, expanding across disciplines and accessible to all students in a number of ways. Students are creating new knowledge in our labs, independently with the guidance of their mentors, as part of innovative class projects, and even to support their activism.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Kruppel-Like Factor 9 Inhibits Glioblastoma Stemness
    KRUPPEL-LIKE FACTOR 9 INHIBITS GLIOBLASTOMA STEMNESS THROUGH GLOBAL TRANSCRIPTION REPRESSION AND INHIBITION OF INTEGRIN ALPHA 6 AND CD151 By Jessica Tilghman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2015 Abstract Glioblastoma (GBM) stem cells (GSCs) represent tumor-propagating cells with stem-like characteristics (stemness) that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing novel strategies that target tumor propagation to inhibit cancer progression and improve patient survival. Krüppel-like factor 9 (KLF9) has emerged as a regulator of cell differentiation, neural development, and oncogenesis; however, the molecular basis for KLF9’s diverse contextual functions has been unclear. We establish for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stem-like cells, and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and regulation of cancer stem-like phenotype. A detailed analysis of two novel KLF9 targets suggests that KLF9 inhibits glioma cell stemness by repressing expression of integrin α6 and CD151. The expression of one candidate KLF9 target gene ITGA6 coding for integrin α6 was verified to be downregulated by KLF9 in GSCs. ITGA6 transcription repression by KLF9 altered GBM neurosphere cell behavior as evidenced by reduced cell adhesion to and migration through membrane coated with the integrin α6 ligand laminin. Forced expression of integrin α6 partially rescued GBM neurosphere cells from the differentiating and adhesion/migration-inhibiting effects of KLF9.
    [Show full text]
  • Anti-Cd49a / Integrin Alpha 1 Antibody (ARG57529)
    Product datasheet [email protected] ARG57529 Package: 50 μg anti-CD49a / Integrin alpha 1 antibody Store at: -20°C Summary Product Description Goat Polyclonal antibody recognizes CD49a / Integrin alpha 1 Tested Reactivity Hu Tested Application WB Host Goat Clonality Polyclonal Isotype IgG Target Name CD49a / Integrin alpha 1 Antigen Species Human Immunogen Synthetic peptide around the internal region of Human CD49a / Integrin alpha 1. (C-DKHDFQDSVRIT) Conjugation Un-conjugated Alternate Names VLA-1; CD49a; Integrin alpha-1; Laminin and collagen receptor; VLA1; CD antigen CD49a; CD49 antigen- like family member A Application Instructions Application table Application Dilution WB 0.3 - 1 µg/ml Application Note WB: Recommend incubate at RT for 1h. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 131 kDa (NP_852478.1) Observed Size 150 kDa (glycosylated form) Properties Form Liquid Purification Ammonium sulphate precipitation followed by affinity purification with immunogen. Buffer Tris saline (pH 7.3), 0.02% Sodium azide and 0.5% BSA. Preservative 0.02% Sodium azide Stabilizer 0.5% BSA Concentration 0.5 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol ITGA1 Gene Full Name integrin, alpha 1 Background This gene encodes the alpha 1 subunit of integrin receptors.
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
    CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP),
    [Show full text]
  • Regulation of Cellular Adhesion Molecule Expression in Murine Oocytes, Peri-Implantation and Post-Implantation Embryos
    Cell Research (2002); 12(5-6):373-383 http://www.cell-research.com Regulation of cellular adhesion molecule expression in murine oocytes, peri-implantation and post-implantation embryos 1,2 1,2 2 1, DAVID P LU , LINA TIAN , CHRIS O NEILL , NICHOLAS JC KING * 1Department of Pathology, University of Sydney, NSW 2006 Australia 2Human Reproduction Unit, Department of Physiology, University of Sydney, Royal North Shore Hospital, NSW 2065, Australia ABSTRACT Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, α chain), and CD11a (LFA-1, α chain) on mouse oocytes, and pre- and peri-implantation stage embryos was examined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM, also ex- pressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the com- pacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophectoderm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained signifi- cantly expressed throughout and after blastocyst hatching was expressed on the polar trophectoderm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both VCAM- 1 and CD11a was undetectable throughout. The diametrical temporal expression pattern of ICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesion molecules may be important for interaction of the embryo with the maternal cellular environment as well as for continuing development and survival of the early embryo.
    [Show full text]
  • View Board (IRB) at Tuskegee University
    Myers et al. BMC Cancer (2017) 17:480 DOI 10.1186/s12885-017-3462-7 RESEARCH ARTICLE Open Access Proteomic characterization of paired non- malignant and malignant African-American prostate epithelial cell lines distinguishes them by structural proteins Jennifer S. Myers1, Karin A. Vallega1, Jason White2, Kaixian Yu3, Clayton C. Yates2 and Qing-Xiang Amy Sang1* Abstract Background: While many factors may contribute to the higher prostate cancer incidence and mortality experienced by African-American men compared to their counterparts, the contribution of tumor biology is underexplored due to inadequate availability of African-American patient-derived cell lines and specimens. Here, we characterize the proteomes of non-malignant RC-77 N/E and malignant RC-77 T/E prostate epithelial cell lines previously established from prostate specimens from the same African-American patient with early stage primary prostate cancer. Methods: In this comparative proteomic analysis of RC-77 N/E and RC-77 T/E cells, differentially expressed proteins were identified and analyzed for overrepresentation of PANTHER protein classes, Gene Ontology annotations, and pathways. The enrichment of gene sets and pathway significance were assessed using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, respectively. The gene and protein expression data of age- and stage-matched prostate cancer specimens from The Cancer Genome Atlas were analyzed. Results: Structural and cytoskeletal proteins were differentially expressed and statistically overrepresented between RC-77 N/E and RC-77 T/E cells. Beta-catenin, alpha-actinin-1, and filamin-A were upregulated in the tumorigenic RC-77 T/E cells, while integrin beta-1, integrin alpha-6, caveolin-1, laminin subunit gamma-2, and CD44 antigen were downregulated.
    [Show full text]
  • Integrin and Gene Network Analysis Reveals That ITGA5 and ITGB1 Are Prognostic in Non-Small-Cell Lung Cancer
    Journal name: OncoTargets and Therapy Article Designation: Original Research Year: 2016 Volume: 9 OncoTargets and Therapy Dovepress Running head verso: Zheng et al Running head recto: ITGA5 and ITGB1 are prognostic in NSCLC open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S91796 Open Access Full Text Article ORIGINAL RESEARCH Integrin and gene network analysis reveals that ITGA5 and ITGB1 are prognostic in non-small-cell lung cancer Weiqi Zheng Background: Integrin expression has been identified as a prognostic factor in non-small-cell Caihui Jiang lung cancer (NSCLC). This study was aimed at determining the predictive ability of integrins Ruifeng Li and associated genes identified within the molecular network. Patients and methods: A total of 959 patients with NSCLC from The Cancer Genome Atlas Department of Radiation Oncology, Guangqian Hospital, Quanzhou, Fujian, cohorts were enrolled in this study. The expression profile of integrins and related genes were People’s Republic of China obtained from The Cancer Genome Atlas RNAseq database. Clinicopathological characteristics, including age, sex, smoking history, stage, histological subtype, neoadjuvant therapy, radiation therapy, and overall survival (OS), were collected. Cox proportional hazards regression models as well as Kaplan–Meier curves were used to assess the relative factors. Results: In the univariate Cox regression model, ITGA1, ITGA5, ITGA6, ITGB1, ITGB4, and ITGA11 were predictive of NSCLC prognosis. After adjusting for clinical factors, ITGA5 (odds ratio =1.17, 95% confidence interval: 1.05–1.31) andITGB1 (odds ratio =1.31, 95% confidence interval: 1.10–1.55) remained statistically significant. In the gene cluster network analysis, PLAUR, ILK, SPP1, PXN, and CD9, all associated with ITGA5 and ITGB1, were identified as independent predictive factors of OS in NSCLC.
    [Show full text]