Reagents for Lysergic Acid Diethylamide Immunoassay

Total Page:16

File Type:pdf, Size:1020Kb

Reagents for Lysergic Acid Diethylamide Immunoassay ~™ llll III II III II III IMMII II 1 1 (19) J European Patent Office Office europeen des brevets (11) EP 0 81 6 364 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: C07D 457/06, G01 N 33/94, 07.01.1998 Bulletin 1998/02 G01 N 33/532, G01 N 33/536, (21) Application number: 97110644.8 A61K 31/48, A61K 39/385 (22) Date of filing: 30.06.1997 (84) Designated Contracting States: • Vitone, Stephen S. AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC Piscataway, New Jersey 08854 (US) NL PT SE • Wu, Robert Sundoro West Orange, New Jersey 07052 (US) (30) Priority: 02.07.1996 US 21071 P (74) Representative: (71 ) Applicant: Cottong, Norbert A. et al F. HOFFMANN-LA ROCHE AG F.Hoffmann-La Roche AG 4070 Basel (CH) Patent Department (PLP), 1 24 Grenzacherstrasse (72) Inventors: 4070 Basel (CH) • Salamone, Salvatore Joseph Stockton, New Jersey 08559 (US) (54) Reagents for lysergic acid diethylamide immunoassay (57) The invention provides: noassay,noassE which comprises a label-conjugate of for- mula I lysergic acid diethylamide (LSD) derivatives of for- an improved immunoassay for quantitation of LSD mula and its metabolites in biological fluid samples which utilizes that label-conjugate. N-R wherein R1 and R2 are independently selected from H or R3R4; provided that at least one of R1 and R2 is H, but both R1 and R2 are not simultaneously H; R3 is a bond or a saturated straight or branched chain hydrocarbon of 1-10 carbon atoms when R4 is COR5, or R3 is a saturated straight or branched chain hydrocarbon of 1-10 carbon atoms wherein R4 is NHR5; R5 is selected from H, L or LX; CO L is a linking group; and CO X is a detector or carrier molecule bound CO through L, CO a for quantitation of lysergic acid and its o reagent metabolites in biological fluid samples by an immu- Q_ LU Printed by Xerox (UK) Business Services 2.15.7/3.4 EP 0 816 364 A1 Description This invention relates to novel lysergic acid diethylamide derivatives and to the use of these derivatives in producing anti-lysergic diethylamide antibodies and to the use of these antibodies as reagents in improved immunoassays for 5 lysergic acid diethylamide and its metabolites in biological fluid samples. (+)-Lysergic acid diethylamide 9,10-didehydro-N,N-diethyl-6-methylergoline-8p-carboxamide known as LSD, is a hallucinogen which acts on the central nervous system and alters sensory perception. An ingestion of from 20 to 80 ng of LSD is sufficient to induce hallucination (Nelson, C. and Foltz, R. Anal. Chem, 64, 1578-1585, 1992). The use of LSD has been and continues to be a problem for drug and law agencies around the world. Current methods used to deter- 10 mine the levels of LSD and its metabolites, for example N-desmethyl LSD (nor-LSD), in biological fluids such as serum arid urine include fluorescence spectroscopy, GC/tandem MS, HPLC and radioimmunoassay (RIA). Fluorescence spectroscopy, however, exhibits nonspecific interference and does not distinguish between LSD, its metabolites, and other ergot alkaloids. HPLC results in lower nonspecific interference with antibody binding. However this method is time consuming and not suitable for routine screening of large numbers of samples. Immunoassays offer many advantages 15 over the aforementioned analytical methods, including rapid drug screening and most importantly, high sensitivity. In immunoassays for drugs such as LSD, a biological fluid sample suspected of containing said drug or its metab- olites is contacted with antibodies in the presence of a labeled LSD derivative (label). To the extent that the drug or its metabolites are present in the sample, there will be competition for binding to the antibodies and the amount of the labeled derivative that remains bound will be reduced in proportion to the degree of competition with the drug or its 20 metabolites in the sample. A fluorescence immunoassay for LSD has been described (B. Law et al., Anal. Proc. 20, 606, 1983). The immuno- conjugate that is used to generate antibodies is prepared out of the carboxyl residue of lysergic acid (see e.g., H. Van Vunakis Proc. Nat. Acad. Sci. 68, 1483-1487, 1971) and antibodies derived therefrom would be expected to have high cross-reactivity with a number of ergot alkaloids. The tracer used in this method is produced by conjugating f luorescein- 25 amine to the acid residue of the molecule. The sensitivity of the assay system is in the range of 5-40 ng/ml of LSD. Although this method has the advantage of being rapid, it has a poorer limit of detection than the RIA. A radioimmunoassay for LSD is described wherein an LSD immunoconjugate is prepared out of the carboxy resi- due of lysergic acid (see e.g., H. Van Vunakis Proc. Nat. Acad. Sci. 68, 1483-1487, 1971). However, the antibodies derived from the immunoconjugate are not highly specific for LSD. Several ergot alkaloids such as ergosine, ergono- 30 vine, ergotamine and methysergide (also known as methylergonovine) are shown to compete for binding to the LSD antibodies, resulting in undesirable false positive results. Another radioimmunoassay for LSD in serum and urine samples is described (see W. A. Ratcliffe, Clin. Chem. 23(2), 169-174, 1977), wherein the immunoconjugate is prepared via a Mannich type reaction (J. March, Advanced Org. Chem. 4th ed., 900, 1992), by condensation of LSD and bovine serum albumin (BSA) in the presence of formal- 35 dehyde (Tauton-Rigby, Science, 181, 165, 1973). The immunoconjugate produced generates LSD antibodies having low cross-reactivity to a number of ergot alkaloids. The linkage formed in the condensation is derived out of the indole group of the LSD molecule. 40 This linkage is similar to an acetal and imidazoline (herein termed an "aminoketal") which serve as the nitrogen protect- ing groups of indole. As these groups are each susceptible to hydrolysis in an acidic medium, this linkage can also be readily cleaved by hydrolysis in an acidic medium (see e.g., A.J. Stern etal., J. Org. Chem. 54, 2953 (1989); D.A. Evans, so et al., J. Am. Chem. Soc, 103, 5813 (1981); and A. Giannis, et al., Tetrahedron, 44, 7177 (1988)). N,N'-diisopropyli- denephenylalanylleucine bearing the "aminoketal" linkage is cleaved simply by heating the material in 10 % aqueous solution at 60 °C at neutral pH. (see P.M. Hardy et al., Chem . Soc, Perkin I, 1954 (1977)). Therefore, a method result- ing in this unstable linkage is not suitable for making LSD derivatives to be used in preparing haptens and reagents bearing a stable linkage for immunoassay. 55 Therefore, a non-radioisotopic immunoassay method to rapidly detect LSD and its metabolites, especially in urine samples, is highly desirable. It is also desirable to have an LSD derivative bearing a stable noncleavable linkage from which stable haptens and immunogens can be generated. Furthermore, antibodies used to detect LSD and its metab- olites should be highly specific and should not cross-react with other ergot alkaloids. 2 EP 0 816 364 A1 The present invention provides hapten derivatives that are useful for the preparation of antigenic reagents, antibody reagents and tracer reagents having superior performance characteristics for use in immunoassays for the detection of lysergic acid diethylamide (LSD) and its metabolites. In one embodiment of the present invention, the LSD nucleus is derivatized out of the indole nitrogen to form an aminoalkyl haptenic derivative. In another embodiment, the derivatives 5 are produced out of the piperidine nitrogen of the nor-LSD molecule. The preferred derivatization is through alkylation forming a functional group which can be further modified for linking to an appropriate linking, antigenic or labelling group to provide stable reagents for the immunoassay. The compounds of the invention are derived from LSD and have the formula 10 15 wherein R1 and R2 are independently selected from H or R3R4, provided that at least one of R1 and R2 is H but both R1 and R2 are not simultaneously H; R3 is a bond or a saturated straight or branched chain hydrocarbon of 1-10 carbon 20 atoms when R4 is COR5, or R3 is a saturated straight or branched chain hydrocarbon of 1-10 carbon atoms when R4 is NHR5; R5 is selected from H, L or LX; L is a linking group; and X is a detector or carrier molecule bound through L. The stability of these compounds is provided by the introduction of suitable linkages between the drug moiety and a linking group, carrier proteins or detector molecules. Linking groups are known in the art. They are used to activate, i.e. provide an available site on, a drug derivative 25 for synthesizing a hapten. The use of a linking group may or may not be advantageous or needed depending on the specific hapten and carrier pairs. The selection of an appropriate linking group is within the skill of the art. See e.g., U.S. Pat. No. 5,144,030 and U.S. Pat. No. 5,237,057. It is well known to those skilled in the art that only combinations of atoms which are chemically compatible can comprise the linking group, e.g. that permit covalent bonding between a carrier and a hapten, resulting in the formation of an amide, thiourea, or thioether linkage depending on the nature of 30 the linking groups used. Conventional linking groups, including homobifunctional and heterobifunctional linkers, are suitable for coupling to the LSD amine derivatives of the present invention to activate the derivative for further synthesis of the novel LSD hap- tens and immunogens of the present invention.
Recommended publications
  • Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
    agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies.
    [Show full text]
  • Evidence for the Involvement of Spinal Cord 1 Adrenoceptors in Nitrous
    Anesthesiology 2002; 97:1458–65 © 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Evidence for the Involvement of Spinal Cord ␣ 1 Adrenoceptors in Nitrous Oxide–induced Antinociceptive Effects in Fischer Rats Ryo Orii, M.D., D.M.Sc.,* Yoko Ohashi, M.D.,* Tianzhi Guo, M.D.,† Laura E. Nelson, B.A.,‡ Toshikazu Hashimoto, M.D.,* Mervyn Maze, M.B., Ch.B.,§ Masahiko Fujinaga, M.D.ʈ Background: In a previous study, the authors found that ni- opioid peptide release in the brain stem, leading to the trous oxide (N O) exposure induces c-Fos (an immunohisto- 2 activation of the descending noradrenergic inhibitory chemical marker of neuronal activation) in spinal cord ␥-ami- nobutyric acid–mediated (GABAergic) neurons in Fischer rats. neurons, which results in modulation of the pain–noci- 1 In this study, the authors sought evidence for the involvement ceptive processing in the spinal cord. Available evi- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/97/6/1458/337059/0000542-200212000-00018.pdf by guest on 01 October 2021 ␣ of 1 adrenoceptors in the antinociceptive effect of N2O and in dence suggests that at the level of the spinal cord, there activation of GABAergic neurons in the spinal cord. appear to be at least two neuronal systems that are Methods: Adult male Fischer rats were injected intraperitone- involved (fig. 1). In one of the pathways, activation of ally with ␣ adrenoceptor antagonist, ␣ adrenoceptor antago- 1 2 ␣ nist, opioid receptor antagonist, or serotonin receptor antago- the 2 adrenoceptors produces either direct presynaptic nist and, 15 min later, were exposed to either air (control) or inhibition of neurotransmitter release from primary af- 75% N2O.
    [Show full text]
  • Lysergic Acid on the Heart of Venus Mercenaria By
    Brit. J. Pharmacol. (1962), 18, 440-450. ACTIONS OF DERIVATIVES OF -LYSERGIC ACID ON THE HEART OF VENUS MERCENARIA BY ANNE McCOY WRIGHT, MERILYN MOORHEAD AND J. H. WELSH From the Biological Laboratories, Harvard University, Cambridge, Massachusetts, U.S.A. (Received February 5, 1962) 5-Hydroxytryptamine and a number of (+ )-lysergic acid derivatives have been tested on the heart of Venus mercenaria. One group of derivatives was found to increase the amplitude and frequency of heart beat in a manner much like 5-hydroxy- tryptamine. It included the monoethylamide, diethylamide, propanolamide (ergometrine), butanolamide (methylergometrine) and certain peptide derivatives of lysergic acid without substituents in positions 1 or 2. Of these, lysergic acid diethyl- amide was the most active. Given sufficient time (up to 4 hr), as little as 10 ml. of 10"6 M lysergic acid diethylamide produced a maximum increase in amplitude and frequency in about one-half of the 80 hearts on which it was tested. Its action was very slowly reversed by washing, as was true of all lysergic acid derivatives. A second group of lysergic acid derivatives, substituted in positions 1 or 2, had weak excitor action, if any, and specific 5-hydroxytryptamine blocking action. This group consisted of 1-methyl-, I-acetyl-, and 2-bromo-lysergic acid diethylamide and 1-methyl- lysergic acid butanolamide (methysergide). Of these, the last showed least signs of excitor action, usually none up to 10' M, and it blocked 5-hydroxytryptamine in a molar ratio of about one to one. During the early studies on the pharmacology of the heart of the mollusc, Venus mercenaria, certain of the ergot alkaloids were observed to have a remarkable excitatory action that was only very slowly reversed by washing (Welsh & Taub, 1948).
    [Show full text]
  • The Serotonergic System in Migraine Andrea Rigamonti Domenico D’Amico Licia Grazzi Susanna Usai Gennaro Bussone
    J Headache Pain (2001) 2:S43–S46 © Springer-Verlag 2001 MIGRAINE AND PATHOPHYSIOLOGY Massimo Leone The serotonergic system in migraine Andrea Rigamonti Domenico D’Amico Licia Grazzi Susanna Usai Gennaro Bussone Abstract Serotonin (5-HT) and induce migraine attacks. Moreover serotonin receptors play an impor- different pharmacological preventive tant role in migraine pathophysiolo- therapies (pizotifen, cyproheptadine gy. Changes in platelet 5-HT content and methysergide) are antagonist of are not casually related, but they the same receptor class. On the other may reflect similar changes at a neu- side the activation of 5-HT1B-1D ronal level. Seven different classes receptors (triptans and ergotamines) of serotoninergic receptors are induce a vasocostriction, a block of known, nevertheless only 5-HT2B-2C neurogenic inflammation and pain M. Leone • A. Rigamonti • D. D’Amico and 5HT1B-1D are related to migraine transmission. L. Grazzi • S. Usai • G. Bussone (౧) syndrome. Pharmacological evi- C. Besta National Neurological Institute, Via Celoria 11, I-20133 Milan, Italy dences suggest that migraine is due Key words Serotonin • Migraine • e-mail: [email protected] to an hypersensitivity of 5-HT2B-2C Triptans • m-Chlorophenylpiperazine • Tel.: +39-02-2394264 receptors. m-Chlorophenylpiperazine Pathogenesis Fax: +39-02-70638067 (mCPP), a 5-HT2B-2C agonist, may The 5-HT receptor family is distinguished from all other 5- Introduction 1 HT receptors by the absence of introns in the genes; in addi- tion all are inhibitors of adenylate cyclase [1]. Serotonin (5-HT) and serotonin receptors play an important The 5-HT1A receptor has a high selective affinity for 8- role in migraine pathophysiology.
    [Show full text]
  • Pharmacognosy
    Pharmacognosy Third stage Dr. Enass Najem 2nd semester Lec:8 ERGOT, ERGOT ALKALOIDS, AND LSD When the parasitic fungus Claviceps purpurea lives on rye and other cereal crops, a poisonous alkaloid and called ergot is produced. Ergot was the subject of great fear previously, because people who ate rye products infected with this, fungus experienced a strange and debilitating, and frequently lethal, disease. Ergot contains alkaloids that contract the blood vessels of arms and legs, preventing circulation of the blood, and gangrene results. Thus, people suffering from ergot poisoning lost their hands and legs without bleeding (ergotism), after they became darkened. Although it was well known that ergot was very dangerous, midwives in Europe were also using it for promotion of the contraction of the womb post-parturition. Subsequently, studies of the active principle(s) of ergot responsible for the contractions were initiated. The first alkaloid isolated in crystalline form was ergotinine , but it did not possess the uterocontracting activity. Ergotoxine was the first biologically active alkaloid isolated, and was shown to be a mixture of ergocristine, ergocornine, and related alkaloids. Ergotamine was isolated later in a pure form. The common skeleton of these ergot alkaloids is known as lysergic acid, and ergotamine comprises a structure based on lysergic acid coupled with a peptide moiety. The universal skeleton of the ergot alkaloids is known as the ergoline nucleus. It was shown by using cultivated Claviceps that the ergoline skeleton was derived biosynthetically from tryptophan and a C5 unit of mevalonic acid origin. 1 Pharmacognosy Simple lysergic acid amides, such as ergine and lysergic acid hydroxyethylamide, are obtained from the ergot that lives on wild grass.
    [Show full text]
  • Electrooxidation Enables Highly Regioselective Dearomative Annulation of Indole and Benzofuran Derivatives
    ARTICLE https://doi.org/10.1038/s41467-019-13829-4 OPEN Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives Kun Liu1, Wenxu Song1, Yuqi Deng1, Huiyue Yang1, Chunlan Song1, Takfaoui Abdelilah1, Shengchun Wang 1, Hengjiang Cong 1, Shan Tang1 & Aiwen Lei1* 1234567890():,; The dearomatization of arenes represents a powerful synthetic methodology to provide three-dimensional chemicals of high added value. Here we report a general and practical protocol for regioselective dearomative annulation of indole and benzofuran derivatives in an electrochemical way. Under undivided electrolytic conditions, a series of highly functio- nalized five to eight-membered heterocycle-2,3-fused indolines and dihydrobenzofurans, which are typically unattainable under thermal conditions, can be successfully accessed in high yield with excellent regio- and stereo-selectivity. This transformation can also tolerate a wide range of functional groups and achieve good efficiency in large-scale synthesis under oxidant-free conditions. In addition, cyclic voltammetry, electron paramagnetic resonance (EPR) and kinetic studies indicate that the dehydrogenative dearomatization annulations arise from the anodic oxidation of indole into indole radical cation, and this process is the rate- determining step. 1 College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. *email: aiwenlei@whu. edu.cn NATURE COMMUNICATIONS | (2020) 11:3 | https://doi.org/10.1038/s41467-019-13829-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13829-4 reaking the aromatic systems of electron-rich arenes or fused indolines (Fig. 1a)39–44. Therefore, it is highly appealing to heteroarenes provides three-dimensional chemicals of high develop efficient approaches to allow for their preparation.
    [Show full text]
  • Cabergoline Patient Handout
    Cabergoline For the Patient: Cabergoline Other names: DOSTINEX® • Cabergoline (ca-BERG-go-leen) is used to treat cancers that cause the body to produce too much of a hormone called prolactin. Cabergoline helps decrease the size of the cancer and the production of prolactin. It is a tablet that you take by mouth. • Tell your doctor if you have ever had an unusual or allergic reaction to bromocriptine or other ergot derivatives, such as pergoline (PERMAX®) and methysergide (SANSERT®), before taking cabergoline. • Blood tests and blood pressure measurement may be taken while you are taking cabergoline. The dose of cabergoline may be changed based on the test results and/or other side effects. • It is important to take cabergoline exactly as directed by your doctor. Make sure you understand the directions. Take cabergoline with food. • If you miss a dose of cabergoline, take it as soon as you can if it is within 2 days of the missed dose. If it is over 2 days since your missed dose, skip the missed dose and go back to your usual dosing times. • Other drugs such as azithromycin (ZITHROMAX®), clarithromycin (BIAXIN®), erythromycin, domperidone, metoclopramide, and some drugs used to treat mental or mood problems may interact with cabergoline. Tell your doctor if you are taking these or any other drugs as you may need extra blood tests or your dose may need to be changed. Check with your doctor or pharmacist before you start or stop taking any other drugs. • The drinking of alcohol (in small amounts) does not appear to affect the safety or usefulness of cabergoline.
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Ergot Alkaloids As Dopamine Agonists: Comparison in Two Rodent Models
    European Journal of Pharmacology, 37 (1976) 295-302 295 © North-Holland Publishing Company, Amsterdam - Printed in The Netherlands ERGOT ALKALOIDS AS DOPAMINE AGONISTS: COMPARISON IN TWO RODENT MODELS GILL ANLEZARK, CHRIS PYCOCK and BRIAN MELDRUM Department of Neurology, Institute of Psychiatry, Denmark Hill, London, SE5 8AF, U.K. Received 18 December 1975, revised MS received 20 February 1976, accepted 26 February 1976 G. ANLEZARK, C. PYCOCK and B. MELDRUM, Ergot alkaloids as dopamine agonists: comparison in two rodent models, European J. Pharmacol. 37 (1976) 295-302. A series of ergot alkaloids, together with the DA agonists apomorphine and piribedil, were tested for protec- tive effects against audiogenic seizures in an inbred strain of mice (DBA/2) and for induction of circling behaviour in mice with unilateral destruction of one nigrostriatal DA pathway. The order of potency against audiogenic sei- zures was apomorphine> ergocornine> bromocryptine > ergometrine> LSD> methysergide > piribedil while that observed in the rotating mouse model was apomorphine> ergometrine> ergocornine> brornocryptine > piribedil. LSD caused only weak circling behaviour even when administered in high doses (> 1 mg/kg). Methyser- gide was ineffective. Prior administration of the neuroleptic agent haloperidol blocked the effect of DA agonists and of ergot alkaloids in both animal models. The possible action of ergot alkaloids as DA agonists is discussed. Ergot alkaloids Audiogenic seizures Dopamine agonists Circling behaviour 1. Introduction gic synapses, in two rodent pharmacological models. The first model studied is 'audiogen- The pharmacology of the ergot alkaloids is ic' seizures in genetically susceptible mice. complex and not well understood. Peripheral- The severity of the seizure responses to audi- ly, they act on smooth muscle as 5-hydroxy- tory stimulation can be modified by a variety tryptamine (5-HT) antagonists (Goodman and of drugs believed to act on monoaminergic Gilman, 1971) and as a-adrenergic blockers transmission in the brain (Lehmann, 1970).
    [Show full text]
  • Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease
    cells Article Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease Chih-Yu Yang 1,2,3,4 , Ting-Wen Chen 5,6 , Wan-Lun Lu 5, Shih-Shin Liang 7,8 , Hsien-Da Huang 5,†, Ching-Ping Tseng 4,5,* and Der-Cherng Tarng 1,3,4,9,* 1 Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; [email protected] 2 Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan 3 Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan 4 Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan 5 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; [email protected] (T.-W.C.); [email protected] (W.-L.L.); [email protected] (H.-D.H.) 6 Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan 7 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] 8 Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan 9 Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan * Correspondence: [email protected] (C.-P.T.); [email protected] (D.-C.T.) † Current affiliation: Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen 518172, China. Abstract: Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology.
    [Show full text]
  • Ergot Alkaloid Biosynthesis in Aspergillus Fumigatus : Association with Sporulation and Clustered Genes Common Among Ergot Fungi
    Graduate Theses, Dissertations, and Problem Reports 2009 Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Coyle, Christine M., "Ergot alkaloid biosynthesis in Aspergillus fumigatus : Association with sporulation and clustered genes common among ergot fungi" (2009). Graduate Theses, Dissertations, and Problem Reports. 4453. https://researchrepository.wvu.edu/etd/4453 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Ergot alkaloid biosynthesis in Aspergillus fumigatus: Association with sporulation and clustered genes common among ergot fungi Christine M. Coyle Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Daniel G. Panaccione, Ph.D., Chair Kenneth P. Blemings, Ph.D. Joseph B.
    [Show full text]
  • Organophotocatalytic Dearomatization of Indoles, Pyrroles and Benzo(Thio)Furans Via a Giese-Type Transformation
    ARTICLE https://doi.org/10.1038/s42004-021-00460-y OPEN Organophotocatalytic dearomatization of indoles, pyrroles and benzo(thio)furans via a Giese-type transformation Yueteng Zhang1, Peng Ji1, Feng Gao1, Yue Dong1, He Huang2, Changqing Wang1, Ziyuan Zhou3 & ✉ Wei Wang 1 Accessing fascinating organic and biological significant indolines via dearomatization of indoles represents one of the most efficient approaches. However, it has been difficult for the dearomatization of the electron deficient indoles. Here we report the studies leading to 1234567890():,; developing a photoredox mediated Giese-type transformation strategy for the dear- omatization of the indoles. The reaction has been implemented for chemoselectively breaking indolyl C=C bonds embedded in the aromatic system. The synthetic power of this strategy has been demonstrated by using structurally diverse indoles bearing common electron- withdrawing groups including (thio)ester, amide, ketone, nitrile and even aromatics at either C2 or C3 positions and ubiquitous carboxylic acids as radical coupling partner with high trans- stereoselectivity (>20:1 dr). This manifold can also be applied to other aromatic heterocycles including pyrroles, benzofurans and benzothiophenes. Furthermore, enantioselective dear- omatization of indoles has been achieved by a chiral camphorsultam auxiliary with high diastereoselectivity. 1 Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ, USA. 2 Department of Chemistry and Chemical
    [Show full text]