Environmental Variation, Stochastic Extinction, and Competitive Coexistence

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Variation, Stochastic Extinction, and Competitive Coexistence vol. 172, no. 5 the american naturalist november 2008 E-Article Environmental Variation, Stochastic Extinction, and Competitive Coexistence Peter B. Adler1,* and John M. Drake2,† 1. Department of Wildland Resources and the Ecology Center, The great difficulty in the opportunistic hypothesis is that Utah State University, Logan, Utah 84322; since, if many species are present in a really variable environ- 2. Odum School of Ecology, University of Georgia, Athens, ment which is controlling their competition, chance extinction Georgia 30602 is likely to be an important aspect of the process. (Hutchinson Submitted November 25, 2007; Accepted May 16, 2008; 1961, pp. 141–142) Electronically published September 24, 2008 Temporal variation is a ubiquitous feature of ecosystems, and ecologists have long been interested in how the mag- nitude of variation structures natural populations and abstract: Understanding how environmental fluctuations affect communities (Andrewartha and Birch 1954; Lewontin and population persistence is essential for predicting the ecological im- Cohen 1969). Exogenous environmental variation has pacts of expected future increases in climate variability. However, been shown to affect all levels of biological organization, two bodies of theory make opposite predictions about the effect of from the evolution of individual traits (Cohen 1966; Ven- environmental variation on persistence. Single-species theory, com- mon in conservation biology and population viability analyses, sug- able and Brown 1988) to the stability of ecosystem pro- gests that environmental variation increases the risk of stochastic cesses (Tilman and Downing 1994; Bai et al. 2004). This extinction. By contrast, coexistence theory has shown that environ- basic research must now provide the foundation for un- mental variation can buffer inferior competitors against competitive derstanding the ecological impacts of expected increases exclusion through a storage effect. We reconcile these two perspec- in climate variability. Global circulation models consis- tives by showing that in the presence of demographic stochasticity, tently forecast increases in the frequency of extreme events environmental variation can increase the chance of extinction while such as severe storms and droughts (Karl and Trenberth simultaneously stabilizing coexistence. Our stochastic simulations of 2003; Salinger 2005). As precipitation and temperature a two-species storage effect model reveal a unimodal relationship depart from their historical ranges of variability, theory between environmental variation and coexistence time, implying maximum coexistence at intermediate levels of environmental var- will be crucial for predicting how natural populations will iation. The unimodal pattern reflects the fact that the stabilizing respond. influence of the storage effect accumulates rapidly at low levels of Unfortunately, such predictions are complicated by dis- environmental variation, whereas the risk of extinction due to the agreement between two bodies of ecological theory. The combined effects of environmental variation and demographic sto- single-species models used in population viability analysis, chasticity increases most rapidly at higher levels of variation. Future an important tool in conservation biology, suggest that increases in environmental variation could either increase or decrease environmental variation typically increases the risk of sto- an inferior competitor’s expected persistence time, depending on the chastic extinction due to geometric averaging of popula- distance between the present level of environmental variation and the optimal level anticipated by this theory. tion growth rates over time and high spatial synchrony of species with restricted ranges (Boyce 1992; Menges 2000; Keywords: climate variability, competition, demographic stochasticity, but see Drake 2005; Boyce et al. 2006). By contrast, co- plant communities, population dynamics, simulation. existence theory has shown that environmental variation can buffer rare species against extinction: temporary con- ditions resulting in high individual fitness can allow in- * Corresponding author; e-mail: [email protected]. ferior competitors to escape competitive exclusion (Ches- † E-mail: [email protected]. son and Warner 1981; Chesson and Huntly 1989). Am. Nat. 2008. Vol. 172, pp. E186–E195. ᭧ 2008 by The University of Empirical tests in natural systems indicate that this co- Chicago. 0003-0147/2008/17205-50077$15.00. All rights reserved. existence mechanism may be important in communities DOI: 10.1086/591678 of zooplankton (Ca´ceres 1997), annual plants (Pake and Environmental Variation and Coexistence E187 Venable 1995; Adondakis and Venable 2004; Facelli et al. Extinction in a Single-Species System 2005), and prairie grasses (Adler et al. 2006). As previous authors have noted (Higgins et al. 2000; Changes in the abundance of seeds over time are set de- Levine and Rees 2004), an important difference between terministically (following Chesson and Huntly 1989) by these two perspectives is the focus on competitive inter- the nonlinear difference equation actions in coexistence models. But these two disciplines also have addressed subtly different questions. Single- ˆ lg(Ett)N N ϩ p s[1 Ϫ g(E )]N ϩ ,(1) species conservation studies typically use stochastic sim- t 1 tt ϩ 1 ag(Ett)N ulations to evaluate mean time to extinction in models that include a quasiextinction threshold or formally in- where N is the abundance of seeds at time t, s is the corporate demographic stochasticity (reviewed in Boyce t survival of seeds in the seed bank, l is the per capita 1992; Menges 2000), whereas coexistence theory uses de- fecundity, a is the intraspecific competition coefficient, terministic, analytical models without extinction thresh- and g is the germination rate. This model allows popu- olds or demographic stochasticity to evaluate whether co- lations to decline arbitrarily close to, but not reach, ex- existence is stable in the long term (e.g., Chesson 1990). tinction. To incorporate demographic stochasticity, we Here we aim to reconcile these perspectives by studying ϩ draw the realizedNttϩ1 density of seeds at time1 from the combined effects of environmental variation and de- ˆ a Poisson distribution with expectationN ϩ , that is, mographic stochasticity on mean coexistence times in a t 1 modified version of Chesson and Huntly’s (1989) two- ∼ ˆ species annual plant model. Our approach recognizes that Ntϩ1 Pois(Ntϩ1). (2) environmental variation can increase the probability of extinction while simultaneously stabilizing coexistence by Adding demographic stochasticity means that actual seed buffering inferior competitors against competitive exclu- densities take integer values and that extinction (N p 0 ) sion. To understand the combined effect of these two forces is possible. on the duration of coexistence, we first study them in- We simulated annual germination rates by drawing a dividually. We show that the probability of stochastic ex- sequence of independent and identically distributed ran- tinction in this model is low at low levels of environmental dom variates, E, from a continuous normal distribution variation but then increases quickly at higher levels of 2 with mean 0 and variancejE , and then we used the inverse variation. In contrast, the stabilizing effects of environ- logit transformation to convert E to germination rates in mental variation accumulate most rapidly at low levels of the 0–1 range: environmental variation. As a result, in simulations of the two-species model with demographic stochasticity, we find e E a unimodal relationship between environmental variation g(E) p .(3) ϩ E and coexistence times, implying that coexistence is max- 1 e imized at an intermediate level of environmental variation. 2 We explore how the location of this optimum depends on As the variance of E,jE , increases, extreme values for the degree of competitive asymmetry and the correlation germination occur more frequently (fig. 1). We conducted 2 in species’ responses to the environment. our simulations at values ofjE of 0, 0.4, 1, 2.5, 5, 7.5, and 10. We used simulations to estimate the probability that the population will reach extinction within short time periods, Methods given a specified variance for E. Simulations were initial- p ized at low population density (N0 2 , where N0 is the While the effect of environmental variation on extinction realized density and not the mean of the Poisson process), in single-species systems has been studied for many pop- iterated for 100 time steps, and replicated 10,000 times. ulation models (Alvarez 2001), research on coexistence We did not follow each run to extinction because the mediated by temporal variability is based on a limited set computing time would be prohibitive. The probability of of competition models (Chesson and Warner 1981; Ches- extinction was estimated as the fraction of runs in which son and Huntly 1989; Chesson 2000). To facilitate our density fell to 0. As a baseline for comparison, we set comparison of these distinct perspectives, we first dem- s p 0.5 anda p 1 . We repeated the simulations for values onstrate the single-species approach by using a one-species of l of 10, 15, 25, and 100 to represent a range from small, special case of Chesson and Huntly’s (1989) competition slow-growing populations to larger, fast-growing popu- model. lations. E188 The American Naturalist 2 Figure 1: Distribution of germination rates as a function of variation in the
Recommended publications
  • Species Coexistence in a Variable World
    Ecology Letters, (2011) doi: 10.1111/j.1461-0248.2011.01643.x REVIEW AND SYNTHESIS Species coexistence in a variable world Abstract Dominique Gravel,1* Fre´ de´ ric The contribution of deterministic and stochastic processes to species coexistence is widely debated. With the Guichard2 and Michael E. introduction of powerful statistical techniques, we can now better characterise different sources of uncertainty Hochberg3 when quantifying niche differentiation. The theoretical literature on the effect of stochasticity on coexistence, however, is often ignored by field ecologists because of its technical nature and difficulties in its application. In this review, we examine how different sources of variability in population dynamics contribute to coexistence. Unfortunately, few general rules emerge among the different models that have been studied to date. Nonetheless, we believe that a greater understanding is possible, based on the integration of coexistence and population extinction risk theories. There are two conditions for coexistence in the presence of environmental and demographic variability: (1) the average per capita growth rates of all coexisting species must be positive when at low densities, and (2) these growth rates must be strong enough to overcome negative random events potentially pushing densities to extinction. We propose that critical tests for species coexistence must account for niche differentiation arising from this variability and should be based explicitly on notions of stability and ecological drift. Keywords Coexistence, ecological drift, extinction risk, neutral theory, niche, nonlinear averaging, stability, stochasticity. Ecology Letters (2011) traits would be needed to distinguish them. But in reality there are INTRODUCTION numerous problems associated with this approach because of The ecological niche is a fundamental mechanism to explain species multiple sources of variability in measured trait values.
    [Show full text]
  • The Role of Evolution in Maintaining Coexistence of Competitors Abigail I
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 The Role of Evolution in Maintaining Coexistence of Competitors Abigail I. (Abigail Ilona) Pastore Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THE ROLE OF EVOLUTION IN MAINTAINING COEXISTENCE OF COMPETITORS By ABIGAIL I. PASTORE A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017 Copyright c 2017 Abigail I. Pastore. All Rights Reserved. Abigail I. Pastore defended this dissertation on August 4, 2017. The members of the supervisory committee were: Thomas Miller Professor Directing Dissertation Richard Bertram University Representative Brian Inouye Committee Member Scott Steppan Committee Member Alice Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii For my Mom and for Kristofer Ad astra per aspera iii ACKNOWLEDGMENTS Tom Miller can not be thanked enough, he is a beacon of patience, generosity and fun. His intellec- tual guidance is pervasive through this document and this work should be seen as an extension of the Miller legacy of evolution among competitors. My committee members were aces; Alice Winn's keen ability to cut straight to the heart of any bullshit and generally bring joviality into my day, Scott Steppan's expert guidance through a milieu of phylogenetic inference and general supporter of my stage presence.
    [Show full text]
  • An Expanded Modern Coexistence Theory for Empirical Applications
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 10-11-2018 An Expanded Modern Coexistence Theory for Empirical Applications Stephen P. Ellner Cornell University Robin E. Snyder Case Western Reserve University Peter B. Adler Utah State University Giles J. Hooker Cornell University Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Ellner, S. P., Snyder, R. E., Adler, P. B. and Hooker, G. (2018), An expanded modern coexistence theory for empirical applications. Ecol Lett. doi:10.1111/ele.13159 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. An Expanded Modern Coexistence Theory for Empirical Applications Stephen P. Ellner∗a, Robin E. Snyderb, Peter B. Adlerc and Giles J. Hookerd aDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York bDepartment of Biology, Case Western Reserve University, Cleveland, Ohio cDepartment of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah dDepartment of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York August 12, 2018 Keywords: Coexistence, competition, environmental variability, model, theory. Running title: Extending Coexistence Theory Article type: Ideas and Perspectives Words in Abstract: 200 Words in main text: 6857 (TeXcount, http://app.uio.no/ifi/texcount) Words in text boxes: 486 (main text + text boxes = 7343) Number of references: 46 Number of figures: 3 Number of tables: 6 Number of text boxes: 1 Authorship statement: SPE, RES and GJH led the theory development; SPE and PBA led the data analysis and modeling; SPE, PBA and RES wrote scripts to simulate and analyze models; all authors discussed all aspects of the research and contributed to writing and revising the paper.
    [Show full text]
  • Natural Enemies Have Inconsistent Impacts on the Coexistence Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.270389; this version posted February 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Natural enemies have inconsistent impacts on the 2 coexistence of competing species 3 J. Christopher D. Terry*† 1 0000-0002-0626-9938 [email protected] 4 J. Chen* 2 0000-0002-8435-0897 [email protected] 5 O. T. Lewis 2 0000-0001-7935-6111 [email protected] 6 7 *: Joint first authorship. †Corresponding Author 8 1. School of Biological and Chemical Sciences, Queen Mary University of London 9 2. Department of Zoology, University of Oxford 10 11 Key Words: 12 Modern coexistence theory, competition, natural enemies, Bayesian, model fitting, Drosophila, 13 parasitoid 14 Author Contributions 15 JCDT conceptualised the experiment, led the analysis and wrote the initial draft. JC led the design 16 and execution of the experimental work. Experimental work was conducted by JC and JCDT. All 17 authors contributed to the development of ideas and writing of the manuscript. 18 Funding: The work was supported by NERC grant NE/N010221/1 to OTL and a grant from the China 19 Scholarship Council to JC. JCDT was also funded through NERC grant NE/T003510/1 20 Data Accessibility: 21 All raw observation data and code to replicate the analyses is available at 22 https://github.com/jcdterry/TCL_DrosMCT.
    [Show full text]
  • Niche and Fitness Differences Relate the Maintenance of Diversity To
    Ecology, 92(5), 2011, pp. 1157–1165 Ó 2011 by the Ecological Society of America Niche and fitness differences relate the maintenance of diversity to ecosystem function 1,3 1,2 1 IAN T. CARROLL, BRADLEY J. CARDINALE, AND ROGER M. NISBET 1Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106 USA 2School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 USA Abstract. The frequently observed positive correlation between species diversity and community biomass is thought to depend on both the degree of resource partitioning and on competitive dominance between consumers, two properties that are also central to theories of species coexistence. To make an explicit link between theory on the causes and consequences of biodiversity, we define in a precise way two kinds of differences among species: niche differences, which promote coexistence, and relative fitness differences, which promote competitive exclusion. In a classic model of exploitative competition, promoting coexistence by increasing niche differences typically, although not universally, increases the ‘‘relative yield total,’’ a measure of diversity’s effect on the biomass of competitors. In addition, however, we show that promoting coexistence by decreasing relative fitness differences also increases the relative yield total. Thus, two fundamentally different mechanisms of species coexistence both strengthen the influence of diversity on biomass yield. The model and our analysis also yield insight on the interpretation of experimental diversity manipulations. Specifically, the frequently reported ‘‘complementarity effect’’ appears to give a largely skewed estimate of resource partitioning. Likewise, the ‘‘selection effect’’ does not seem to isolate biomass changes attributable to species composition rather than species richness, as is commonly presumed.
    [Show full text]
  • Chesson's Coexistence Theory
    Reply Ecology, 101(11), 2020, e03140 © 2020 The Authors. Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Chesson’s coexistence theory: reply standardized environmental and interaction parameters Ej and Cj via 1,2,4 3 GYoRGY¨ BARABaS´ AND RAFAEL D’ANDREA E ¼ ð ∗Þ C ¼ ð ∗ Þ ð Þ j rj E j,C j , j rj E j ,C j , 1 Citation: Barabas,´ G., and R. D’Andrea. 2020. Chesson’s coex- ∗ ∗ “ ” istence theory: reply. Ecology 101(11):e03140. 10.1002/ecy.3140 where E j and C j are equilibrium values such that ð ∗ ∗Þ¼ C rj E j ,C j 0 (Chesson defines j with an extra negative sign, conforming to the situation where C measures a ’ j Chesson s (2019) comment on our review of modern competitive reduction in growth rates). In our review, we ´ coexistence theory (Barabas et al. 2018) focuses on per- did mention these definitions, though only as a refer- ceived mistakes and provides a re-derivation of key ence. Instead, we defined the standardized parameters as results from his own perspective. The criticisms concern quadratic approximations to these formulas (Barabas´ three main issues: the definition of standardized environ- et al. 2018:279): mental and interaction parameters; the definition of comparison quotients and the meaning of their non- E ¼ α À ∗ þ 1αðÞ2 ð À ∗Þ2 uniqueness; and the status of the theory when there are j j E j E j j E j E j , 2 at least as many limiting factors as species in the system.
    [Show full text]
  • Biotic Controls of Plant Coexistence
    Biotic controls of plant coexistence I. Bartomeus 1, O. Godoy 2 1. Estación Biológica de Doñana (EBD-CSIC). Av. Américo Vespucio 26, 41092 Sevilla Spain. [email protected] 2. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC). Av. Reina Mercedes 10, 41012 Sevilla Spain. [email protected] Abstract 315, Main 3291, References 48 Abstract: 1. The quest for understanding the maintenance of species diversity has matured in recent decades under the umbrella of species coexistence theory, founded by Chesson (2000). One central gist of the theory point outs that coexistence between species at local scales depends on two opposing forces: average fitness differences between species, which drive the best-adapted species to exclude others, and stabilizing mechanisms, which promote diversity via niche differentiation. 2. One pressing aim which is gaining momentum is understanding how interactions of plant species with other organisms shape the maintenance of plant diversity by acting upon equalizing and stabilizing forces. But this interest contrasts with the lack of empirical information. Therefore, a fundamental step now is assessing the prevalence of these mechanisms on controlling plant coexistence across a wide range of interactions and systems. 3. To that end, this special feature presents 10 theoretical, observational or manipulative studies illustrating 9 different biotic interactions including mutualisms (pollinators, seed dispersers, soil microbes and arbuscular mycorrhizal fungi) and antagonisms (leaf and seed herbivores, and leaf and root pathogens). All studies share a common question ¿how biotic interactions regulate plant coexistence? 4. Comparisons across studies suggest that biotic interactions modify both niche and average fitness differences.
    [Show full text]
  • Polyrhythmic Foraging and Competitive Coexistence Akihiko Mougi
    www.nature.com/scientificreports OPEN Polyrhythmic foraging and competitive coexistence Akihiko Mougi The current ecological understanding still does not fully explain how biodiversity is maintained. One strategy to address this issue is to contrast theoretical prediction with real competitive communities where diverse species share limited resources. I present, in this study, a new competitive coexistence theory-diversity of biological rhythms. I show that diversity in activity cycles plays a key role in coexistence of competing species, using a two predator-one prey system with diel, monthly, and annual cycles for predator foraging. Competitive exclusion always occurs without activity cycles. Activity cycles do, however, allow for coexistence. Furthermore, each activity cycle plays a diferent role in coexistence, and coupling of activity cycles can synergistically broaden the coexistence region. Thus, with all activity cycles, the coexistence region is maximal. The present results suggest that polyrhythmic changes in biological activity in response to the earth’s rotation and revolution are key to competitive coexistence. Also, temporal niche shifts caused by environmental changes can easily eliminate competitive coexistence. Diverse species that coexist in an ecological community are supported by fewer shared limited resources than expected, contrary to theory1. A simple mathematical theory predicts that, at equilibrium, the number of sym- patric species competing for a shared set of limited resources is less than the quantity of resources or prey species2–4. Tis apparent paradox leads ecologists to examine mechanisms that allow competitors to coexist and has produced diverse coexistence theory5–7. Non-equilibrium dynamics is considered as a major driver to prevent interacting species from going into equilibrium and violate the competitive exclusion principle 8,9.
    [Show full text]
  • Accurate Predictions of Coexistence in Natural Systems Require the Inclusion of Facilitative Interactions and Environmental Dependency
    Received: 9 February 2018 | Accepted: 15 May 2018 DOI: 10.1111/1365-2745.13030 BIOTIC CONTROLS OF PLANT COEXISTENCE Accurate predictions of coexistence in natural systems require the inclusion of facilitative interactions and environmental dependency Malyon D. Bimler1 | Daniel B. Stouffer2 | Hao Ran Lai3,4 | Margaret M. Mayfield1 1School of Biological Sciences, The University of Queensland, St Lucia, QLD, Abstract Australia 1. Coexistence between plant species is well known to depend on the outcomes of 2 Centre for Integrative Ecology, School species interactions within an environmental context. The incorporation of envi- of Biological Sciences, University of Canterbury, Christchurch, New Zealand ronmental variation into empirical studies of coexistence are rare, however, due to 3Yale‐NUS College, Singapore, Singapore the complex experiments needed to do so and the lack of feasible modelling ap- 4Department of Biological Sciences, National proaches for determining how environmental factors alter specific coexistence University of Singapore, Singapore, Singapore mechanisms. 2. In this article, we present a simple modelling framework for assessing how varia- Correspondence Margaret M. Mayfield, School of Biological tion in species interactions across environmental gradients impact on niche over- Sciences, The University of Queensland, St lap and fitness differences, two core determinants of coexistence. We use a novel Lucia, 4072, Queensland, Australia Email: [email protected] formulation of an annual plant population dynamics model that allows for com- petitive and facilitative species interactions and for variation in the strength and Funding information Marsden Fund Council from the New direction of these interactions across environmental gradients. Using this frame- Zealand Government, Grant/Award Number: work, we examine outcomes of plant–plant interactions between four commonly 16-UOC-008 and RDF-13-UOC-003; Australian Research Council, Grant/Award co‐occurring annual plant species from Western Australian woodlands.
    [Show full text]
  • A General Theory of Coexistence and Extinction for Stochastic Ecological Communities
    Journal of Mathematical Biology (2021) 82:56 https://doi.org/10.1007/s00285-021-01606-1 Mathematical Biology A general theory of coexistence and extinction for stochastic ecological communities Alexandru Hening1 · Dang H. Nguyen2 · Peter Chesson3 Received: 15 July 2020 / Revised: 17 February 2021 / Accepted: 12 April 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We analyze a general theory for coexistence and extinction of ecological communi- ties that are influenced by stochastic temporal environmental fluctuations. The results apply to discrete time (stochastic difference equations), continuous time (stochastic differential equations), compact and non-compact state spaces and degenerate or non- degenerate noise. In addition, we can also include in the dynamics auxiliary variables that model environmental fluctuations, population structure, eco-environmental feed- backs or other internal or external factors. We are able to significantly generalize the recent discrete time results by Benaim and Schreiber (J Math Biol 79:393–431, 2019) to non-compact state spaces, and we provide stronger persistence and extinction results. The continuous time results by Hening and Nguyen (Ann Appl Probab 28(3):1893– 1942, 2018a) are strengthened to include degenerate noise and auxiliary variables. Using the general theory, we work out several examples. In discrete time, we clas- sify the dynamics when there are one or two species, and look at the Ricker model, Log-normally distributed offspring models, lottery models, discrete Lotka–Volterra models as well as models of perennial and annual organisms. For the continuous time setting we explore models with a resource variable, stochastic replicator models, and three dimensional Lotka–Volterra models.
    [Show full text]
  • Rethinking Community Assembly Through the Lens of Coexistence Theory
    ES43CH11-HilleRisLambers ARI 26 September 2012 10:57 Rethinking Community Assembly through the Lens of Coexistence Theory J. HilleRisLambers,1 P.B. Adler,2 W.S. Harpole,3 J.M. Levine,4 and M.M. Mayfield5 1Biology Department, University of Washington, Seattle, Washington 98195-1800; email: [email protected] 2Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322; email: [email protected] 3Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011; email: [email protected] 4Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland, and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106; email: [email protected] 5The University of Queensland, School of Biological Sciences, Brisbane, 4072 Queensland, Australia; email: m.mayfi[email protected] Annu. Rev. Ecol. Evol. Syst. 2012. 43:227–48 Keywords First published online as a Review in Advance on biotic filters, clustering, environmental filters, relative fitness differences, August 29, 2012 stabilizing niche differences, overdispersion The Annual Review of Ecology, Evolution, and Systematics is online at ecolsys.annualreviews.org Abstract This article’s doi: Although research on the role of competitive interactions during community 10.1146/annurev-ecolsys-110411-160411 by University of British Columbia on 10/03/13. For personal use only. assembly began decades ago, a recent revival of interest has led to new dis- Copyright c 2012 by Annual Reviews. coveries and research opportunities. Using contemporary coexistence theory All rights reserved that emphasizes stabilizing niche differences and relative fitness differences, 1543-592X/12/1201-0227$20.00 Annu.
    [Show full text]
  • When Rarity Has Costs: Coexistence Under Positive Frequency- Dependence and Environmental Stochasticity
    Ecology, 100(7), 2019, e02664 © 2019 by the Ecological Society of America When rarity has costs: coexistence under positive frequency- dependence and environmental stochasticity 1,4 2,3 1 SEBASTIAN J. S CHREIBER, MASATO YAMAMICHI, AND SHARON Y. S TRAUSS 1Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616 USA 2Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501 Japan 3Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan Citation: Schreiber, S. J., M. Yamamichi, and S. Y. Strauss. 2019. When rarity has costs: coexistence under positive frequency-dependence and environmental stochasticity. Ecology 100(7):e02664. 10.1002/ecy.2664 Abstract. Stable coexistence relies on negative frequency-dependence, in which rarer species invading a patch benefit from a lack of conspecific competition experienced by residents. In nat- ure, however, rarity can have costs, resulting in positive frequency-dependence (PFD) particu- larly when species are rare. Many processes can cause positive frequency-dependence, including a lack of mates, mutualist interactions, and reproductive interference from heterospecifics. When species become rare in the community, positive frequency-dependence creates vulnerability to extinction, if frequencies drop below certain thresholds. For example, environmental fluctuations can drive species to low frequencies where they are then vulnerable to PFD. Here, we analyze deterministic and stochastic mathematical models of two species interacting through both PFD and resource competition in a Chessonian framework. Reproductive success of individuals in these models is reduced by a product of two terms: the reduction in fecundity due to PFD, and the reduction in fecundity due to competition.
    [Show full text]