Interaction with Mobile Devices Safiza Suhana Binti Kamal Baharin

Delft,October2007 RGI149ReportNr1

Interaction with Mobile Devices Safiza Suhana Binti Kamal Baharin

Delft,October2007 RGI 149 Report Nr 1

Summary

The focus of this report is on how to interact on mobile devices and why it is necessary to embrace a paradigmshiftintermsofinteractiontechniquesformobiledeviceswhichallowausertocommunicatewith mobiletechnologyusingaslittlevisualattentionaspossibletoaccesstheeffectivenessofsuchparadigms. Theliteraturecoveredisoncurrentinputandoutputmethods,andtheadvantagesanddisadvantagesof each method with a view to answering the question “What is the best inputoutput method for mobile devices?”,andcouldbeusedasguidelinesforinputandoutputmethodsformobiledevices.Thisreportwill contributetotheRGI149project,ofwhichthemainfocusistopushaproperamountofgeoinformationto themobileuser’sdevice.Generallyspeaking,theuserofthisprojectapplicationisanenvironmentalofficer responsible for environmental protection. Their job specificationrequiresthemtoalwaysbemovingfrom onepointtoanother,dependentontheirtasks.Theapplicationof‘BuitenBeter’istosupportsurveillancefor environmental officers, to obtain information on rubbish dumping, pollution and other happenings, for example.Inordertocarryoutinspections,forinstance,theyshouldbesupportedwithsuitablemaps.The keyproblemhereishowtopresentthisamountofinformationwithinthelimitationsofasmallscreensize. ApreviousreportonCartographicRepresentationinSmallDisplay Screensmentionedapplyingacontext awaretechnologytothisapplication. Thisreportattemptstoexplainhowtointeractwithamobiledeviceandwhyitisnecessarytoembracea paradigmshiftintermsofinteractiontechniquesformobiledevicesthatcouldbeusedbydedicatedusers with as little visual attention as possible to access information efficiently and effectively based on their profile,identity,locationandbehaviour. Projectleader : SectionGISTechnology OTBResearchInstituteforHousing,UrbanandMobilityStudies DelftUniversityofTechnology Address : Jaffalaan9 2628BXDelft Contact : ir.E.Verbree Tel. :+31(0)152782584 Fax :+31(0)152782745 Email :[email protected] Website : RGI149 Geoinfotogo

Contents

1 Introduction ...... 1

2User Interfaces: Desktop Computers and Hand-Held Devices ...... 2

3Fundamentals of Input/Output Methods for Mobile Devices ...... 4 3.1OutputMechanisms ...... 7 3.2InputMechanisms ...... 9 3.2.1Multitap...... 12 3.2.2TwokeyDisambiguation ...... 12 3.2.3LinguisticDisambiguation(T9) ...... 13 3.3KeyPressTechniques ...... 13 3.4TiltbasedInteraction...... 19

4 Conclusion...... 26 References ...... 27

iii Geoinfotogo RGI149

iv RGI149 Geoinfotogo

1 Introduction

Today, mobile devices such as mobile phones, PDAs and are ubiquitous. Mobile phone technologyisrapidlyevolvingtowardsapersonalinformationassistantthatiscapableofmanagingmany other personal needs beyond communication with other humans, offering other assorted services from personal calendars, address books, photography and music to navigation tools and location information. Mobile phones can also support humans in communicating or interacting, or even for exchanging data betweendevices.Thisisbecomingmorewidespreadas usersare starting to move their computer usage fromtheworkplaceandoccasionalhomeuseontothestreetandintotheireverydaylives.Carryingamobile devicehas become asimportant aswearingawatch, if not more useful: right now, the functionality of mobiledevicesexceedsthatofthewatchintermsofusability.Forexample,morethansimplytellingusthe timeanddateandhavinganalarmfunction,amobiledevicecandisplayatasklist,navigationguide,health informationorshoppinglist. Unfortunately, parallel with the rapid growth of the mobile computing market, there are issues raised in terms of the usability of interactive mobile devices, it being hard to design interfaces and modes of interaction for devices that have small screensand limited memory resources. Inresponseto this, as we know,onceadevicebecomesmobile,lessismore:thedevicemustkeepusersintouchwithoutstretching theliningofthepocketorpurse.Aspacesavingdeviceisbetterfortheuseraslongasitssizedoesnot compromiseitsusabilityorefficiency.Forthisreason,theaveragesizeofthemobiledeviceisindecline. Thequestionherecouldthereforebeasfollows:“Howcanmobilephoneswithalimitedscreensizeinteract effectivelywiththeirusers?” Onemajorchallengefacedinthedesignofmobiledevicesisthatdevicesaretypicallyusedwhentheuser has limited physical resources and increased content must be accessed via shrinking input and output channels.Comparedtoadesktopsystem,mobiledeviceshaverestrictedinputandoutputcapabilitiesthat typicallyreducetheirusability.Oftenwithaverylimitedamountofscreensizeorspace,thevisualdisplay canbecomeclutteredwithinformationandwidgets.Datainputisalsolimitedbysmallkeypadsorsimple handwritingrecognition.Speechrecognitionwouldappearnottobeanidealoptioninthiscasebecauseof problemsrecognisinginputinnoisyenvironments,whichrequireimprovement.Newinteractiontechniques arethereforeneededtoaccessserviceswhilstonthemove. The focus of this report is on how to interact on mobile devices and why it is necessary to embrace a paradigmshiftintermsofinteractiontechniquesformobiledeviceswhichallowausertocommunicatewith mobiletechnologyusingaslittlevisualattentionaspossibletoaccesstheeffectivenessofsuchparadigms. Theliteraturecoveredisoncurrentinputandoutputmethods,andtheadvantagesanddisadvantagesof each method with a view to answering the question “What is the best inputoutput method for mobile devices?”,andcouldbeusedasguidelinesforinputandoutputmethodsformobiledevices.Thisreportwill contributetotheRGI149project,ofwhichthemainfocusistopushaproperamountofgeoinformationto themobileuser’sdevice.Generallyspeaking,theuserofthisprojectapplicationisanenvironmentalofficer responsible for environmental protection. Their job specificationrequiresthemtoalwaysbemovingfrom onepointtoanother,dependentontheirtasks.Theapplicationof‘BuitenBeter’istosupportsurveillancefor environmental officers, to obtain information on rubbish dumping, pollution and other happenings, for example.Inordertocarryoutinspections,forinstance,theyshouldbesupportedwithsuitablemaps.The keyproblemhereishowtopresentthisamountofinformationwithinthelimitationsofasmallscreensize. ApreviousreportonCartographicRepresentationinSmallDisplay Screensmentionedapplyingacontext awaretechnologytothisapplication. Thisreportattemptstoexplainhowtointeractwithamobiledeviceandwhyitisnecessarytoembracea paradigmshiftintermsofinteractiontechniquesformobiledevicesthatcouldbeusedbydedicatedusers with as little visual attention as possible to access information efficiently and effectively based on their profile,identity,locationandbehaviour.

1 Geoinfotogo RGI149

2 User Interfaces: Desktop Computers and Hand-Held Devices

Users are stationary in the desktop environment. Userssitatadeskandnormallydevotealltheirvisual resourcestotheapplicationwithwhichtheyareinteracting,withtheresultthattheinterfacesofdesktop based applications are typically very graphical and extremely detailed and utilise a standard mouse and keyboardasinteractionmechanisms.AnexampleofadesktopsystemisshowninFigure2.1,withamonitor andspeakersasoutputdevicesandakeyboardandmouseasinputdevices.Allthisequipment,oratleast thefunctionalityofeachdevice,mustbeprovidedinamobiledeviceaswell.

Figure2.1DesktopEnvironment In contrast, users are typically in motion whilst using a mobile device. This means that users are not devotingalloranyoftheirvisualresourcestointeractingwiththeirdevicebecausetheyarerestrictedto focusingontheirprimarytask(driving,walking,navigating,etc.),otherwisetheyexposethemselvestothe risk of accident. Asweknow, mobile devices have limited screen area, and traditional input and output capabilitiesarerestrictedingeneraltothe useofakeyboard,keypadorsimplehandwritingrecognition, depending on the type of mobile device. Uotila (2000) states that there are three categories of mobile device: mobile communication devices, mobile computer devices and mobile information devices. Each category has three parameters: supported input device, capabilities of screen configuration and type of networkaccess.Mobilecommunicationdevicesincludedevicesthataresmallinsizeandthushavelimited inputandoutputcapabilities,andarealsocapableofpeertopeertextorvoicecommunicationandlimited informationretrieval.Figure2.2showsanexampleofvariousmobilecommunicationdevices. Figure2.2MobileCommunicationDevices

2 RGI149 Geoinfotogo

Mobilecomputerdevicescanperformmoregeneralandpersonalisedusertasksthroughtheinstallationof third party applications such as prayer time alerts, mobile dictionaries, maps, pictures, etc. They usually havebetteruserinterfacecapabilitiesthanmobilecommunicationdevices.Figure2.3showssomeexamples of mobile computer devices. Environmental officers requireatleastthiskindofdevicetocarryouttheir work. Figure2.3MobileComputerDevices

Mobileinformationdevicesareahybridoftheothertwocategories.Theyprovidebetteraccesstonetwork information systems than mobile computer devices by providing a larger display screen and better interaction devices. They have similar functionality to mobile computer devices but they have the upper handwhenitcomestoaccessingnetworksandbrowsinginternetdata.Figure2.4showsexamplesofmobile informationdevices. Table2.1givesaclassificationofmobiledevices. Figure2.4MobileInformationDevices Table2.1ClassificationofMobileDevices(source:Uotila,2000). Category Input ScreenConfiguration Network Access Mobilecommunicationdevices Keyboard <100*100pixels Lowend Standardphones <5cm2 network PIMphones Singlecolour access Twowaypagers Mobilecomputerdevices Touchscreen >100*100(≤640*480) No direct PDA&PIMdevices (Keyboard) pixels access Pads >100cm2

3 Geoinfotogo RGI149

Subnotebooks ≥16colours Mobileinformationdevices Touchscreen Asmobilecomputer Highend Communicators Landscapedisplay network Smartphones HalfVGAresolution access Portraitdisplay Differencesrelatingtooutputandinputcapabilitiesbetweendesktopandmobiledeviceuserinterfacescan bedividedintotwoparts:outputandinput.

3 Fundamentals of Input/Output Methods for Mobile Devices

Before we examine input/output methods for mobile devices, we should look at fundamental issues concerningtheinput/outputmethodsofmobileclients.Oneapproachtoaddressingtheissuesassociated with this mobile computingtechnology is tolook at the constraintsassociated with the human user. An input/outputapproachdefinestheissuesasfollows: Theuser’smethodofinteractionwiththedevice:whattypeofmobilitydoesitallow? Whereandwhenmaytheuserdownloadanduploadinformationtothemobileclient? These issues may be summarised as mobility and connectivity. Figure 3.1 shows the two dimensions of mobilityandconnectivity.Mobilitydimensiondefinesthe“mobility”ofamobileclient.

4 RGI149 Geoinfotogo

Figure3.1MobilityversusConnectivity (source:Uotila,2000)

AccordingtoUotila(2000),basedonthefigureabovetherearetwodimensions,mobilityandconnectivity. Mobilityisconcernedwithhowtetheredauseriswhenusingamobiledevice.Thedefinitionofmobilityis notrestrictedtotheabilitytowalkabout,butrefersinsteadtothemobilityofthewholebody.Themajor componentsofmobilityconsistoffreedomofthelegs,thearms,andtheeyes.Therequirementisthatthe armsandlegsbefreeforadevicetobeconsideredtobeonethatallowsfullmobility.Thepointofrequiring theeyestobefreefortruemobilitycomesfromthefactthatifadevicerequiresthefullattentionofthe eyes,thentherestofthebodyisnotcompletelyfreeeither. The dimension of connectivity concerns the electronic downloading and uploading of information. This aspectdifferentiatesamobiledevicefromamobileclientinthatadevicebecomessomethingmuchmore whenithasthepowertocommunicatewiththerestoftheworld.Thedegreeofconnectivitycanvaryfrom noneatall,tobeingabletodownload/uploadonlywhensyncedwithanotherdevice,tofullconnectivityat anytime.Theconnectivityofadevicehasclearimplicationsforhowthedevicemaybeusedtoaccomplish tasksandtheactionsthatthenbecomerequiredoftheoperator. Allowingtheusergreaterfreedomofmovementcausedtheshiftininterfacemethodsfromfixedlayouts, fixed keyboards and visual displays to wearable systems, chording keyboards, and auditory interface methods.Theultimategoalofthisshiftingofinterfacemethodsistoallowtheusertoaccomplishthesame taskswhilemobilethatwereoriginallyperformedatafixedlocationsystem.Figure3.2showshowmobile computingshiftsinterfacemethodsfromfixedlocationhardwaretowearabledevices.

5 Geoinfotogo RGI149

Figure3.2Computingshiftsinterfacemethodsfromfixedlocationhardwaretowearabledevices (source:Uotila,2000) Therearethreemostprominentwaysofinteractingwithamobiledevice,whicharethefollowing: Inputtinginformationwithorwithoutastylusonatouchsensitivedisplay. EnteringdatausingakeypadbyusingmultitaporpredictivetextT9technology. Making(fine)movements,e.g.usingafingeronamobilephonejoystickormovingthewholedevice. Unlike desktop computers, inputdevices for mobile devicesareoftenrestrictedbythelimitedsizeof the device. As a result, multiple functions must be assigned to the same buttons and this makes the user interfacecomplicatedandunpredictable.Inthissense,thewayormethodwithwhichtheuserinteractswith themobiledevicealsocontributestotheefficiencyofthemobiledeviceuserinterfacedesign.Thewayor methodinwhichtheusercurrentlyinteractscanbecategorisedintwoways:twohandandonehand. Pascoeetal.(2000)reportthatinterfacedesignforfieldworkersusingamobiledevice(normallyPDA)for data collection tasksisbased ontwo general principles: Minimal Attentionof UserInterface (MAUI) and context awareness. The MAUI seeks tominimisethe attention required, but not necessarily through the number of interactions required from the user in operating the device. Context awareness enables the mobiledevicetoprovideassistancebasedonknowledgeofitsenvironmentormeansthatithasthecapacity tosenseitsenvironment. Wecanassumethatenvironmentalofficersuseamobiledeviceinthesamewayasfieldworkers,asPascoe etal.(2000)mentionthattherearefourcharacteristicsoffieldworkersthatshouldbeconsideredin user interfacedesignformobiledevices.Thesearelistedbelow. Dynamic User Configuration :Thefieldworker’staskistocollectdatawheneverandwherevertheyneed, butwithoutachairoradeskonwhichtosetuptheircomputingapparatus.Nevertheless,fieldworkersstill need to record data during observations whether they are standing, crawling or walking. Likewise, environmentalofficersneedtoobtaininformationwheneverandwherevertheylikeinwhateverconditions (walking,running,driving,etc). Limited Attention Capacity : Data collection tasks are oriented around observing the subject. Level of attention is dependent on the nature of the subject. For example, when observing animal behaviour, fieldworkersmustkeepconstantvigilonthesubjecttonoteanychangesinstate,sohe/shehaslimitedtime tointeractwiththerecordingmechanism.Similarly,mobileenvironmentalofficersalsoneedadevicethat can minimise the time devoted to interacting with the mobile device in order to obtain the relevant information. High-Speed Interaction :Takingobservationofanimalbehaviourasanexample,subjectsrequiringtime dependentobservationarehighlyanimatedandfieldworkersmustenterhighvolumesofdataveryquickly andaccuratelyoritmaybelost.Similarly,environmentalofficersmaysometimesneedtomakehighspeed interactiontoobtainrelevantinformation.

6 RGI149 Geoinfotogo

Context-Dependency : The fieldworker’s activities are intimately associated with their context or the subject’s context. For example, in recording an observation of an elephant, its location or the point of observationwillberecordedtoo.Inthisway,thedatarecordedisselfdescribingofthecontextfromwhich itwasderived.Thesamecouldbesaidofanenvironmentalofficerobservingapollutedarea,whichmay selfdescribethecontextfromwhichitwasderived. Althoughtherelativeimportanceofthesefourfactorscanvarywithdifferentfieldworkerormobileuserslike theenvironmentalofficer,almostallfactorsareneededbytheminmobileapplication.Tosolvetheproblem oflimitedattentioncapacityanddynamicconfigurationoftheuser,muchresearchhasbeencarriedoutin whichdifferentapproacheshavebeenhighlightedandconstructedinvolvinginputdevicesandmechanisms, from simple and lowcost hardware and software to highend and additional hardware requirements. Startingfromtheassumptionthatsmalldevicesareusedunderthesameconditionsascomputingdevices, which require an input and output device, so the design of input and output modes is also important to mobileapplicationstomakeinteractionsmoother. 3.1 OutputMechanisms

In terms of output, the most significant difference between any two devices is the size of the screen. Although today’s devices have more than enough computing power to offer complex GUIs, their limited screensizemeansthatthepresentationofcomplexGUIsisworsened.Itisoftenimpracticaltosimplyapply the same user interface as a desktop in a mobile device such as a PDA, mobile phone or becausetheyhaveasmallscreen.Hardwaredevelopmentsolutionswillnotsolvetheproblementirelyuntil hardwaredevelopmentdoesnotrequirethecapabilitiesoftheuserforittofunction.Advancesintechnology cannotsolvealltheseproblemseither,becausehumanfactorsremainconstant.Screenconfigurationaffects thephysicalsizeofthedevice.Forexample,inordertoaddressscreensizeissues,conceptshavebeen designedwhichuseaheadmounteddisplaywithamobiledevice.However,thisapproachcanbeobtrusive andhardtouse,especiallyinbrightdaylight,andcouldoccupytheuser’svisualattention.Despitethisnew interaction, techniques are needed to enable users to access particular services whilst on the move effectivelyandsafely.Fromvarioussourcesitcanbeconcludedthatthereareseveralfactorsthatshouldbe takenintoconsiderationwhendesigningtheinteractiveuserinterfaceformobiledevices.Thesearelisted below. User Needs :Thisistoensuresafenavigationthroughtheenvironmentwhilstinteractingwiththemobile application.Theapproachthatcouldbeusedininteractiontechniquesis“eyesfree”or“handsfree”,giving theuserfreedominhis/heractions. Social Context : To define the situation in which the technique is to be employed. For example, which gestureinteractionsaresociallyacceptable,towhatextentspeechbasedinteractionisappropriate,etc. Physical Context :Todowithmobiledevicesituationsthatareconstantlychanging,includingchangesin ambienttemperature,noiselevels,lightinglevels,privacy,etc. Task Context :Anygiventaskmightrequiredifferentinteractiontechniquesanddependonthecontextin whichthetaskisbeingperformed,suchaswhilewalking,navigating,standing,sitting,etc. Forthemostpart,researchintomobiledeviceinteractionhasbeenfocusedondesigningauserinterfaceto involve as little visualattentionas possible fromitsuser.AccordingtoSawhney&Schmardt(2000)and Pirhonen etal.(2002), nonspeech audiois an effective approach in mobile device interaction. Relevant informationisfedtotheuser’searswhiletheuserisstillabletomaintaintheirvisualfocuswhilstnavigating theworldaroundthem.Thisapproachrequiresuserstowearanadditionallisteningdevice,whichshould not prove to be a problem since the user could wearthesamedeviceasforlisteningtomusic.Thusa combinationofsimulated3DsoundandmultidimensionalgestureswasintroducedbyBegault(1994).

7 Geoinfotogo RGI149

AccordingtoBegault,3Dsoundallowsasoundsourcetoappearasifitiscomingfromanywhereinspace around the user (as listener). For example, in research by Cohen & Ludwig (1991), users could obtain informationabout different items indifferent areas by wearing a headphonebased 3D audio. Sawhney & Schmandt(2000), in theirresearch on Nomadic Radio application, investigate the use of 3D sound on a mobile device. This application is a wearable personal messaging system that delivers information and messagestotheuseronthemoveviaspeechandnonspeechsounds.Theuserwearsamicrophoneand shouldermountedspeakersthatprovide a planar 3D environment. Nomadic Radio uses an auditory user interface which synchronises speech recognition, speech synthesis, nonspeech audio and spatial presentationofdigitalaudio.Figure3.3showstheprimarywearableaudiodeviceinNomadicRadio.

Figure3.3NomadicRadio (source:Begault,1994) CocktailParty,anapplicationbyArons(1992),uses3Daudiothatallowsuserstolistentomultiplesound streamsconsecutivelybutstillbeingabletoseparateeachone.Thespatialpositionofthesoundaroundthe headcanalsogiveinformationaboutthefileofoccurrence.Theprocessofseparationisbasedonfactors thatcancreatea“filter”thatcanseparatevoices. AccordingtotheresearchofBrewster&Murray(2000)andBrewster(2002),nonspeechaudiocanimprove interaction when the sound allows users to keep their visual attention focused on navigating the world aroundthem.Pirhonen,Brewster&Holguin(2002)useagestureandnonspeechaudiotoimprovetheuser interfaceofamobilemusicplayer,wheretheusermayuseaplayerwithouthavingtolookatitscontrols whiletheyarewalking,running,exercising,etc.Thisresearchconcernsdesignandinvolvesamusicplayer controlled with simple gestures, with feedback given via nonspeech sound. The sounds used to give feedback on the gestures were sent through earphones. Here, it is important to provide feedback on gesturesasuserswouldnotseeanythingbutwouldneedtoknowthestateofthedevice.Inotherwords, gestureandaudiofeedbackarecloselyrelated.So,inordertodesigntheuserinterfaceforamobiledevice, wemusttakeintoaccountthewayinwhichtheusermayobtaininformationonthestateofhis/heraction, eitherthroughfeedbackorcues. However,besidesthedesigningoftheGUIandthedeviceitself,theapplicationofadaptivesystemsand contextawarenessalsoplayanimportantrolethat must be takeninto consideration when designing the applicationinordertopushthe‘proper’amountofgeoinformationtotherightperson,attherighttimeand in the right way. These approaches ensure that the user gets the possibility to specify the information he/shereallyneedsforhis/herpurpose,orhe/shecanspecifyhis/herpurposeandthenthesystemcould selectthenecessarydataandleaveoutunimportantdetails.Thebasicconceptofthisapproachisthatifthe systemknowsenoughfromthesurroundingsoftheusagesituationandcurrentuseractivity,thenthemap canbeadaptedtothecontextsotheuserwillgetanappropriateorproperamountofinformationthatis suitableforthesituationandthespecificuserandforthatdevice.Fromhere,wecanseetheimportanceof ‘taskcontext’inthedesignphaseofmobiledevices,aswellasGUIpresentationandoutputdevicesthat couldbeusedwiththem.

8 RGI149 Geoinfotogo

3.2 InputMechanisms

Thetraditionalmobilephonekeypaddedicatedtodigitinputalsofeaturesletterinput(see Figure3.4).Thedeviceisoftenheldinonehandandthethumbisusedasanoperatortoenterdigitsor letters. The digits (0–9)are mapped to each key in a onetoone fashion. Letters are mapped to those particular9keys(keys1–9)inamanytoonefashion,dependingonthedevicemodel.Eachmodelmay have a different approach to generating a letter. The mobile phone letter keypad is normally used for sendingshorttextmessages(SMS). Figure3.4NormalMobilePhoneKeypad However,therearesomedifferencesinnumericallayoutbetweenphonesandkeyboards(seeFigure3.5). Thelayoutlocatesdigit1attheupperleft,whilethekeyboardlayoutlocatesdigit1atthelower left.Intheinterestsofpreventingtypingerrors,variousresearchershavestudiedwhythetelephonekeypad is arranged differently from the keypad.There is a theory that phone companies intentionally reverse the calculator configuration to slow down operating speeds, especially those of people who are alreadyfast at operating a calculator, toallow the phone signal to register. Tone recognition technology couldnotoperateeffectivelyatthespeedsatwhichtheseexperiencedusersandspecialistscoulddialthe numbers.Sotelephonedesignersfiguredthatiftheyreversedthelayout,thediallingspeedswoulddecrease and the tone recognition would be able to do its job more reliably. Theoretically, when we pick up the phone,theexchangesensesthecompletionofourloopanditplaysadialtonesoundsoweknowthatthe exchangeandourphoneareworking.Thedialtonesoundissimplyacombinationofa350Hztoneanda 440Hztone(seeFigure3.6,KeyboardTrivia).

9 Geoinfotogo RGI149

(a)

(b) Figure3.5Numericallayoutof(a)telephoneand(b)computerkeyboard

Figure3.6TheDialToneSound (source: http://communication.howstuffworks.com/telephone5.htm ) Another theory refers to a study carried out by Bell Labs in 1960. This study involved testing several different telephone keypad layouts in order to find out which was easiest to use. After testing several layouts,includingonethatusedtworowsoffivenumberseachandanotherthatusedacircularpositioning, it was determined that the threebythree matrix thathad1,2and3acrossthetopwastheeasiestfor people to use. Another theory is based on the layout of a rotary telephone or pushbutton dialling (see Figure3.7).Onarotarydial,1isatthetoprightandzeroisatthebottom.However,itdidnotmakesense todesignthenewkeypad(touchtonedialling)withdigit1onthetoprightbecauseWesternwritingisread fromlefttoright.Putting1onthetopleft,andthesubsequentnumberstotheright,didmakesense,with zerohavingits ownrowatthebottom.Therewasanotherreasonaswell.Ifwestickwiththekeyboard layout,whenitcametomatchingthelettersofthealphabetupwiththenumbers,putting123acrossthe topmadealotmoresensebecauseitwasthemostnaturalwaytogetABCinthetoprow.If789had beenatthetop,thelettersandnumberswouldhaveruninoppositedirections,andPQRSwouldhavebeen

10 RGI149 Geoinfotogo thefirstsetofletters.Eitherarrangementwouldhaveseemedveryoddandcomplicatedindeed.Sosome telephonecompaniesdesignedtheirphonekeypadstomimictheQWERTYcomputerkeyboard,asillustrated inFigure3.8.

Figure3.7Rotarytelephoneorpushbuttondialling

Figure3.8TelephonekeypadswithQWERTYstylekeyboard TheVelotypekeyboardcouldprovideanalternativesolutiontothepreventionoftypingerrors.TheVelotype isaspeciallyadaptedcomputerdevelopedintheNetherlandsthatallowsatrainedtypisttoinputtextat speakingrate.Itisaportablewirelesstexttelephonewithanextramicrophoneandtextdisplayinitslater versions. Velotyping is an easy, natural and ergonomic way to type three times faster than normal QWERTY,AZERTYorQWERZtypinginallEUlanguages,offeringveryfavourableapplicationsforthebenefit ofthehearingimpairedin(realtime)telecaptioningapplications.Forexample,whenadeafpersonvisitsthe doctor,meetssomeoneinthestreet,sitsinaclassroomoranyofthethousandsofsituationsinwhicha deafpersonwouldneedtohaveaccesstospokeninformation,he/sheonlyneeddialthe“velotypistsrelay centre”,placethemicrophonenearthesoundsource,andreadarealtimetranscriptionofwhatisbeing saidfromthedisplay.Acopyofthetextcanbereadbyasingleuser,orbymultipleusersinasingleorin several locations. Telecaptioning allows hearing impaired persons to have access to and participate in teleconferences,satelliteconferencesandotherspeechbasedtelematicsapplications. Figure3.9showstheVelotypekeyboard.

11 Geoinfotogo RGI149

Figure3.9TheVelotypeKeyboard Whenusingastandardkeyboard(suchasQWERTY,AZERTYorQWERZ),wemustentertextfroma26 characteralphabetusingthekeypad.Thistaskforcesamappingofmorethanonecharacterperbuttonof thekeypad.Atypicalmappinghaskeys2–9representingeitherthreeorfourcharacters,withspaceand punctuationmappedtotheotherbuttons.Alltextinputtechniquesthatusethisstandardkeypadhaveto somehowresolvetheambiguitythatarisesfromthismultiplexedmapping.Therearethreemaintechniques for overcoming this ambiguity: multitap, twokey and linguistic disambiguation (Wigdor & Balakrishnan, 2003). 3.2.1 Multitap

Themostcommonstyleoftextentryusingamobilephonenumberpadismultitap(Mackenzie,2002).This styleusesmultiplelettersthataremappedtothesamekey(see Figure 3.4). Users can enter text into the keypad withone or bothhands,using oneortwo fingersor thumbs,pressingakeytocyclethroughthelettersuntilthedesiredoneappearsonscreen,andproceeding tothenextletterifitislocatedonadifferentkey.Theproblemariseswhenthedesiredletterisonthesame key.Forexample,tappingthe2keythreetimescouldresultineither cor ab .Toovercomethis,multitap employsatimeoutoftypically1–2secondsonthe buttonpresses,sothatnotpressingabuttonforthe lengthofthetimeoutindicatesthatyouaredoneenteringthatletter.Entering ab underthisschememeans theuser must press the 2 key once for a,waitforthetimeout,thenpress2twicemoreto enter b.To overcomethetimeoverheadthisincurs,manyimplementationsadda“timeoutkill”buttonthatallowsthe usertoskipthetimeout.Ifweassumethat0isthetimeoutkillbutton,thismakesthesequenceofbutton pressesfor ab :2,0,2,2.Inotherwords,usersmustwaitashorttimeforthephonetoaccepttheletteror recognisethe“timeoutkill”.Alternatively,somephonesusethe“#”buttontoforcethephonetomoveto thenextletter.Forexample,theword“good”canbewrittenbyentering“4666#6663”(9keypresses).

3.2.2 TwokeyDisambiguation

Thetwokeytechniquerequirestheusertopresstwokeysinquicksuccessiontoenteracharacter.Thefirst keypressselectstheappropriategroupofcharacters,whilethesecondidentifiesthepositionofthedesired characterwithinthatgroup.Forexample,toenterthecharacter e,theuserpressesthe3keytoselectthe group,followedbythe2key,since e is in the second position within the group. This techniqueisquite simplebuthasfailedtogainpopularityforRomanalphabets.

12 RGI149 Geoinfotogo

3.2.3 LinguisticDisambiguation(T9)

Another common typing method on mobile phones is T9 (predictive text), which uses a dictionary to disambiguatetheuser’sinput.Justlikemultitap,multipleletterscorrespondtothesamekey.However,the userisrequiredtopresskeyswiththecorrespondinglettersonlyonce.Astheuserenterstheword,the phonecontinuallyguesseswhatwordtheuseristyping.Userscancyclethroughpotentialwordsbypressing the“#”key.Forexample,iftheusertypes“3323”for“deaf”,thefirstwordT9wouldguessis“dead”,but theusermaypressthe“#”keyuntilthephonedisplaystheproperword.However,T9canbefrustrating andslowwhenenteringwordsthephonedoesnotrecognise. 3.3 KeyPressTechniques

Thereareseveraltechniquesunderresearchconcerningkeypressmethodsforefficientinputofdatathat couldalsobenefitinteractivetechniquesinmobilephones.SmallscreendevicesoftendonothaveQWERTY keyboards and mouselike devices like the desktop computer. Therefore, to address issues of size and portabilitysomeinputmodeshavebeendevelopedtomimicthekeyboardandthemouseforusewithsmall devices.Manysmallportableelectronicproducts,likechordkeyboards,havealsobeenproposedasinput devices.Achordkeyboardisakeyboardthattakessimultaneousmultiplekeypressestoformacharacterin the same way that a chord is played on a piano. In chord keyboards, the user presses multiple key combinations,mainlytwolettercombinations,toenteraninputinsteadofusingonekeyforeachcharacter. Sincechordkeyboardsrequireasmallnumberofkeys,theydonotrequiremuchspace,orasmanykeysas regularkeyboardssuchastheQWERTYkeyboard. Forexample,theTwiddler2(seeFigure3.10)isaonehandedchordkeyboardwithonly12fingertipkeys. TheTwiddler2isapocketsizedmousepointerplusafullfunctionkeyboardinasingleunitthatfitsneatlyin theuser’srightorlefthandandaringofcontrolkeysunderthethumb.TheTwiddler2’smousepointeris theIBMTrackPoint.Whencontrollingthemousepointerwiththethumb,thefingersinfrontcontroltheclick functions.Forexample,whenpressingthemousebuttonwiththethumb,the“A”buttononthefrontisyour LEFTCLICK,“B”isadedicatedDOUBLELEFTCLICK,andsoon.TheTwiddler2incorporatesaradicalnew ergonomickeypaddesignedfor “chord” keying.This meansthattheuserpressesoneormorekeysata time.Eachkeycombinationgeneratesauniquecharacterorcommand.With12fingerkeysand6thumb keys,theTwiddler2canemulatewitheasethe101keysonthestandardkeyboard.

Figure3.10Twiddler2 (source: http://twiddler2.com/ )

13 Geoinfotogo RGI149

The BAT Personal Keyboard (see Figure 3.11) is a onehanded compact keyboard that replicates all the functionsofafullsizekeyboard.Asa“chording” keyboard,letters,numbers,commandsandmacrosare createdwithkey combinationsor “chords”.TheBATisagoodtypingsolutionforpeoplewithphysicalor visualimpairments.Itcanbeusedasaoneortwohandedchordingkeyboard.

Figure3.11BATPersonalKeyboard (source: http://www.maxiaids.com/store/prodView.asp?utm_source=Froogle& utm_medium=organic&utm_campaign=Froogle&idAff=15225&idproduct=3583 ) TheVirtualKeyboard(see Figure 3.12) ( http://www.virtualdevices.net/Products.htm ) provides similar input capabilities as a desktop keyboard. The difference is that it does not require external space to balance the keyboard and is appropriateformobilesituationswherespaceisatapremium.Itcanbeprojectedontoandusedonany surface.Thekeyboardwatchesyourfingersmoveandtranslatesthatactionintokeystrokesinthedevice. Mostsystemscanalsofunctionasavirtualmouse.

Figure3.12VirtualKeyboard TheSenseboard(see Figure3.13)( http://www.senseboard.com )isauniquedesignthatallowsstandardtextinputinpractically anyenvironment.TheSenseboardconsistsoftwohandworncomponentswhichuseBluetoothtechnology to connect with the designated computingdevice. Senseboard utilises sensor technology to recognise the charactersauseristyping.Textinputisbasedonmovementoftheusers’handsandfingers.

14 RGI149 Geoinfotogo

Figure3.13Sensorboard TheLightglove(see Figure3.14,anddemosessionat http://www.lightglove.com/demofr.htm )isanewhumaninterfacedevice thatrequirestheusertowearadeviceontheundersideofhis/herwrist.Lightfromthedevice(visibleor infrared)scansthepalmandsenseswrist,handandfingermotion.Thisdataistranslatedintoeitheron screencursorcontrolorkeyclosuresandinadditionworksasalongdistanceon/offswitchforvirtuallyall electronics.Wirelessoperationofferscordlessfreedom,therebyreducingtheoccurrenceofrepetitivestrain injuriessuchascarpaltunnelsyndrome.

Figure3.14Lightglove KITTY (see Figure 3.15 and Figure 3.16, demo at http://www.kittytech.com ), an acronym forKeyboard Independent TouchTYping, is a fingermounted keyboard that uses touchtyping as the method of data entry. The deviceis targeted at the portable computing market and in particular wearable computing systems,whichareinneedofasilent,“invisible”dataentrysystembasedontouchtyping.Thenewdevice combinestheideaofafingermountedchordingdevice(suchastheTwiddler2)withtheadvantagesofa system that uses touchtyping (such as the Virtual Keyboard, Senseboard, Lightglove, or the Scurry by Samsung( http://www.time.com/time/magazine/article/0,9171,220015,00.html ).

15 Geoinfotogo RGI149

Figure3.15KITTY(KeyboardIndependentTouchTYping)

Figure3.16Fingermountedkeyboard Severaltypesofglovebaseddevicesthatrecognisehandgesturesorcontact gesturesdirectlyhavebeen widelyproposedascomputerinputdevices.Thesedevicesarewellsuitedforuseinamobileenvironment becausetheglovescanbeworninsteadofheld,arelightweight,andtakeuplittlecarrying space.It is, however, difficult to recognise enough separate gestures to allow useful text input. Rosenberg & Slater (1999)proposedaglovebasedinputdevicecalledthechordingglovetocombinetheportabilityofacontact glove with the benefits of a chordkeyboard. Intheirchordingglove,thekeysofachordkeyboardwere mountedonthefingersofagloveandthecharacterswereassociatedwithallthechords,followingthe keymap.TheChordingGloveisshowninFigure3.17.

16 RGI149 Geoinfotogo

Figure3.17ChordingGlove ThePinchkeyboard(Bowman,Ly&Campbell,2001)isavirtualkeyboardthatusesPinchGloves(see Figure3.18),lightweightgloveswithconductiveclothoneachfingertipthatsensewhentwoormorefingers aretouching.ThePinchkeyboardusesthesamekeylayoutastheQWERTYkeyboard,andsome“inner” characterswereselectedbyawristrotatingmotionthatcouldbedetectedbymotiontrackersattachedto thegloves.Pinchingisbasicallythemotionofmakingcontactbetweenthetipofthethumbandafingertip ofthesamehand.

Figure3.18PinchGlove According to Pratt et al. (1998), “Thumbcode” is also a onehanded deviceindependent chording sign language with a glovebased input device similar to the Pinch keyboard. The Thumbcode paper can be viewedat http://boole.stanford.edu/thumbcode/ . Figure3.19belowshowshowtospell“CAT”inThumbcode.TheThumbcodegloveisshowninFigure3.20.

17 Geoinfotogo RGI149

Figure3.19Howtospell“CAT”inThumbcode

Figure3.20ThumbcodeGlove Unfortunately,whentheuserisfrequentlymobile,distractedorbusywithothertasks,akeyboardbecomes problematicwhentheuserstopskeyinginthedata,andastyluspenmighteasilybedroppedandlost. Static input methods for mobile devices have had a negative effect in terms of dynamic usage. This is becausethosemethods(stylusorkeyboardusage)oftenrelyonusingtwohands,onetoholdthedevice and one to enter the data. Pascoe et al. (2000) identified the most comfortable grip for onehanded operations,showninFigure3.21,andDongetal.(2005)theoneshowninFigure3.22.

Figure3.21Comfortablegripinonehandedoperations(source:Pascoeetal.,2000)

18 RGI149 Geoinfotogo

Figure3.22Comfortablegripinonehandedoperations (source:Dongetal.,2005) Suchahandgripleavesonlyonethumbfreetooperatethedevice.Inotherwords,thislimitsthemodesof taskinput.Inanswertothis,Rekimoto(1996)createdanotherinnovativeinputmechanism,adevicethat couldhandletheinputmechanismusingonlysinglehandoperation,usingtiltastheinputmethod.Inspite of the disadvantages of having a stylus, touch screen devices have advantages such as providing direct manipulationsimplybytouchingavisualdisplayofchoices,easierhandeyecoordinationthanamouseor keyboard, no extra workspace and durability in termsofpublicaccessandhighvolumeusage.Butsmall screensizeagainrestrictstheusageofatouchscreen.Thesedevicescannotbeusedwithoutastylusdue tothefactthatuserelementinterfacesareoftensmallerthanthesizeofahumanfingertip.Selectingtext blocks,forexample,becomesdifficultwithoutastylus. 3.4 TiltbasedInteraction

Several researchers have recently proposed interesting interaction techniques that are enabled by incorporatingalowcosttiltsensorwithinmobiledevices.Partridgeetal.(2002)andEslambolchilaretal. (2004)proposedtheTiltType(seeFigure3.23)toprovide fast and reliable text entryto small watch or pagerlikedevices.Itworksbydetectingthetiltofthedevicewithasmallonboardaccelerometer.Toenter text theusersimplypresses a buttonand holds it down,while tilting thedevice inthe direction of the desiredletter.Whenthedesiredletterisdisplayed,theuserstopspressingthebuttonandthecharacteris entered.Thedeviceisthenreadyforthenextcommand.Thelettersarelaidoutinatictactoefashionfor eachbutton,thuseachbuttoncanaccessnineletters(e.g.rightforward,centrebackward).Threebuttons therefore give the English alphabet. By pressing a combination of buttons, the user can write numbers, specialcharacters,backspaceandspace.

19 Geoinfotogo RGI149

Figure3.23TiltType TiltText(Wigdor&Balakrishnan,2003)isanewtechniqueforenteringtextintoamobilephone.TiltText usesacombinationofabuttonpressandtiltingofthedevicetodeterminethedesiredletter.Itusesthe sameconceptastheTiltTypetechnique,usingtilttodisambiguatebuttonpresses.Thedifferencebetween TiltTypeandTiltTextisthatTiltTypeuseseighttiltdirections,whileTiltTextusesamaximumoffour tilt directions, in order to reduce the accuracy demands on the user when tilting. TiltText is not language dependentbutitcanbeusedonlybyexpertsbecauseitdoesnotrequiretheusertopayvisualattentionto thedisplayscreen.TiltTextusestheorientationofthephonealongtwoaxestodisambiguatethemeaning ofbuttonpresses.Tiltingthephonetotheleftselectsthefirstletterofthekey,awayfromthebodythe second,totherightthethird,and,ifpresent,towardsthebodythefourth(seeFigure3.24).Pressingakey withouttiltingresultsinenteringthenumericvalueofthekey.Spaceandbackspaceoperationsarecarried outbypressingunambiguoussinglefunctionbuttons(asinmultitap).

20 RGI149 Geoinfotogo

Figure3.24TiltText Unigesture(Sazawal,Want&Borriello,2002)isheavyonthewristandallowsonlylinearsearching.IfT9is adesignthatsavestheuserfromunnecessarybuttonpresses,Unigesturealsoappliesthesetimesaving ideastotilttowrite.WithUnigesture,thealphabetisdividedinto7zones.Spaceisallocatedazoneofits own.Towritealetter,theusertiltsinthedirectionofazoneandthenreturnstothecentre.Anexampleis shownin Figure3.25.Noadditionalgestureisneededtospecifywhichletteriswantedwithinthezone.Rather,the Unigesturesystemwillacceptasequenceoftiltgesturesandthenattempttoinferaword.Theadvantages oftheUnigesturemethodincludethevarietyofslighttiltgesturesthatcanbeused.Eachtiltgesturereturns theusertoaneutralcentreposition,whichpreventsstrainonthearmandwrist.Slighttiltsalsomakefor quickmotion,whichsuggeststhatUnigestureusersshouldbeabletowritequickly.

21 Geoinfotogo RGI149

Figure3.25Unigestureusersmusttiltasmalldevice (source:Sazawal,Want&Borriello2002) Currently, the Samsung SCHS310 and Nokia 550 provide humanmotion recognition. The Samsung SCH S310applicationcanbeviewedontheYouTubewebsiteat http://www.youtube.com/watch?v=rYJ1EfpV3jI and http://www.youtube .com/watch?v=yqYVJ0zpDx8 , and at http://www.youtube.com/ watch?v=NXcSm94RK6A fortheNokia550.Usingasensor,theSamsungphonecanswitchfromlandscape toportraitwhenshootingvideoorsnappingastillpicture,orpreventapicturefrombecomingblurredfrom handshake.Gamescanalsobeplayedbymovingthephone up,down, right orleft, instead of pressing buttons.Thephonewillalsobeabletosensechangesinbodymovementandprovideadviceondietingor otherhealthtips.TheHTCX7500isalsoequippedwithabuiltintiltsensor(seeFigure3.26).

Figure3.26HTCX7500 GestureWrist(Rekimoto,2001)supportshandsfreeoperationbutneedstobeattachedtothewrist.Itisa wristbandtype input device that recognises hand gestures and forearm movements. GestureWrist recogniseshandgesturesbymeasuringchangesinthearmshapeontheinsideofthewristband.Todothis, combinationsoftransmitterandreceiverelectrodesareattachedtothebackofthewatchdialandtheinside ofthewristband.However,thiskindofinputdevicemustbecombinedwithanotherdevicetopresentthe output,suchasanaudiofeedbackfunction(seeFigure3.27). FreeDigiter(Metzger,Starner&Anderson,2004)isaninterfaceformobiledeviceswhichenablesrapidentry ofdigitsusingfingergestures.Itworksviaaninfraredproximitysensorandadualaxisaccelerometerand requireslittlesignalprocessing.Itsupportseasygesturesbyrecognisingthenumberoffingerssweptpast its proximity sensor. For example, users may move two fingers past FreeDigiter’s proximity sensor to indicateoptiontwo(see Figure3.28).

22 RGI149 Geoinfotogo

Figure3.27GestureWrist (source:Rekimoto,2001)

Figure3.28FreeDigiter (source:Metzger,Starner&Anderson,2004) WristCam (Vardy, Robinson & Cheng, 1999) provides onehanded interaction but requires a camera to recognisegestures.Thisresearchfocusedonhowimagesofauser’shandfromavideocameraattachedto theundersideofthewristcanbeprocessedtoyieldfingermovementinformation.Discretemovementsof thefingersawayfromarestpositionaretranslatedintoasmallsetofbasesymbols.Theseareinterpreted asinputtoawearablecomputer.

23 Geoinfotogo RGI149

AccordingtoYee(2003),Peepholeisamovablewindowandspatiallyawareinputmethodthattracksspatial informationforusewithasmallscreen.ThescreenofasmalldeviceequippedwithPeepholefunctionsasa windowoveralargerworkspace,sothattheuserseesdifferentpartsoftheentireworkspacebyphysically movingthesmalldeviceacrossthelargerarea.AnexamplePeepholemethodisshowninFigure3.29.In termsofaninteractionmethod,Yeecombinesthepossibilitiesofthemobilewindowwithvirtualspaceusing bothhands andstylus for interaction. Forthispurpose, one hand is used to move the PDA through the virtual 3D space showing its contents while the other hand uses the digital pen to interact with the representation.Forexample,wecanwritetextlongerthanthescreenbymovingbothhandscoordinately whilstwriting(see Figure3.30).Wecanalsodolargedrawingsbymovingonehandthroughspaceandtheotherontopofthe screen.Abigcirclecanbedrawnjustbyholdingthepeninthecentreofthescreenandmovingitincircles inspace(seeFigure3.31).

Figure3.29Exampleofpeepholemethodtopanthecalendarusingonlyonehand

Figure3.30Exampleofpeepholemethodtowritetextlongerthanthescreenbymovingbothhands coordinatelywhilstwriting

24 RGI149 Geoinfotogo

Figure3.31Exampleofdoinglargedrawingsbymovingonehandthroughspaceandtheotherontopofthe screen Thereisalsosomeresearchthatfocusesononehandeddeviceinteraction(ontheassumptionthatone handed usage will minimise user attention. Examples include the AppLens and LaunchTile (Karlson, Bederson & SanGiovanni, 2005). The designs use variations on zooming interface techniques to provide multipleviewsofapplicationdata.AppLensusestabularfisheyetoaccessnineapplications,whileLaunchTile uses pure zoom to access thirtysix applications. Two sets of thumb gestures represent different philosophiesforonehandedinteraction,asshowninFigure3.32.

Figure3.32AppLensandLaunchTile

25 Geoinfotogo RGI149

4 Conclusion In conclusion, we can say that there are two important questions to be answered and taken into considerationwhendesigningapplicationsformobiledevices:“howtorepresentgeoinformationinasmall device”and“howtomakeasmalldeviceinteractive”.Therearealsoseveralfactorsthatareconstraintsto designing the user interface, such as small and lightweight hardware, handsfree operation and no full attentiondemand.Thesethreerequirementscouldrepresentaguidelinefordesigningthebestinteraction techniquesformobiledevices. As explained before, when users or “fieldworkers” are working outside the office (e.g. environmental officers),theywillundertaketasksdynamically,wheneverandwherevertheylike,inwhatevercondition. Theywillalsohavelimitedattentioncapacity,dependingonthenatureoftheirsubjects,andthereforetheir time for interacting with the device or mechanism will be limited. While on the move, fieldworkers may sometimesneedtomakehighspeedinteractiontoobtainrelevantinformation,sothismustbetakeninto accountinapplicationdevelopment.Contextisalsoveryimportantandplaysanimportantroleinanswering bothquestionsabove.Inordertointeractefficientlywiththemobiledevice,wecandividetheinteraction technique into two categories: output mechanism and input mechanism. For the outputmechanism, both hardware andsoftware development areinvolved and interaction techniques that mightbe used must be effectiveandsafe.Forexample,usingaheadmounteddisplayinordertocaterforscreensizeissues,and forsoftwaredevelopment,thedevicemusthaveasensorthatcanrecognisethecontextinvolved,suchasa sensor that could recognise the weather and alter the brightness of the display based on weather information.Besidesthis,theoutputmechanismmustaccountforuserinteractionneeds,suchasan“eyes free” or “handsfree” approach to give users freedom in their actions. Gesture type or to what extent speechbased interaction is socially acceptable, otherwise known as social context, are also important in choosinganinteractiontechnique.Otherthanthat,physicalcontext(e.g.changesinambienttemperature, noise level, etc.) and task context are also important. There are various techniques (such as wearing headphonebased3Daudio,usingagestureandnonspeechaudio)andapplications(suchastheNomadic Radioapplication,CocktailParty)thathavebeenusedandstudiedtorepresentinformationtotheuser.For theinputmechanism,therearevarioustechniquesandwaystoinputdatasuchasmultitap,twokeyand linguistic disambiguation. Various devices can be used, such as Twiddler2, BAT Personal Keyboard, Senseboard,Lightglove,KITTY,Fingermountedkeyboard,ChordingGlove,PinchGlove,ThumbcodeGlove, etc. and various techniques such as tiltbased interaction, TiltText, Unigesture, GestureWrist, FreeDigiter, WristCam,PeepholeandAppLensandLaunchTile. Hopefully,basedonthisreport,thebesttechniqueforinteractionwithmobiledevicescouldbechosen.The mode of interacting and representing appropriate information to the user must involve contextaware technology, so a system (software) or device (hardware) can adapt and provide relevant information in order to suit the needs of the user, of the environment, and of the equipment. Or, in other words, an application must be contextaware and capable of perceiving the user situation inits many aspects.And adaptation is a goal of context awareness which is able to drive the application without explicit tuning operationsbytheuser.InvolvementofcontextawarenessintheRGI149projectisveryimportantinorder tosupportthesurveillanceactivitiesofenvironmentalofficers.Byusingthisapproach,thesystemcanpush the proper amount of geoinformation based on the profile of the user, identity, location and behaviour. Thusitcouldindirectlysolvestoragelimitationproblemsandprovideonlyrelatedandrelevantinformation basedonuserneeds.Thisspecialkindoflocationaware,adaptive,contextdrivendevicecansupplygeo informationtoagroupofuserswhoseactivitiesarewelldepictedandunderstood,bringingthisapplication asacompletesystemtoanenvironmentalapplicationthatcanaidenvironmentalprotection.

26 RGI149 Geoinfotogo

References Arons,B.(1992)“AReviewoftheCocktailPartyEffects”,JournaloftheAmericanVoiceI/OSociety,Volume 12,pp.35–50,July1992. Eslambolchilar, P. and MurraySmith, R., TiltBased Automatic Zooming and Scaling in Mobile Devices—a StateSpaceImplementation,ProceedingofMobileHCI2004,Glasgow,SpringerLNCS,2004. Begault, D.R. (1994) “3D Sound for Virtual Reality and Multimedia”, Academic Press Professional, Inc, p.293. Brewster, S.A. (2002) “Overcoming the Lack of Screen Space on Mobile Computers”, Personal and UbiquitousComputing,Volume6,Issue3,pp.188–205,SpringerVerlag,LondonUK. Cohen,J.M.andLudwig,L.F.,“MultidimensionalAudioWindowManagement”,InternationalJournalofMan MachineStudies,Volume34,Issue3,pp.319–336,AcademicPressLtd. KeyboardTrivia,TheCalculatorReference[online]http://www.vcalc.net/keyboard.htm Pascoe,J.,Ryan,N.andMoves,D.(2000)“UsingWhileMoving:HCIIssuesinFieldworkEnvironment”, Pirhonen,P.,Brewster,S.A.andHolguini,C.(2002)“GesturalandAudioMetaphorsasaMeansofControlin MobileDevices”,ProceedingsoftheSIGCHIconferenceonHumanfactorsincomputingsystems:Changing ourworld,changingourselves,pp.291–298,ACMPress. Sawhney, N. and Schmandt, C. (2000) “Nomadic Radio: Speech and Audio Interaction for Contextual MessaginginNomadicEnvironments”,ACMInteractiononComputerHumanInteraction,Volume7,Issue3, pp.353–383,ACMPress.

27 Geoinfotogo RGI149

28