Cardiac Rhythms and Arrhythmias Chapter 12 Sinus Node Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Cardiac Rhythms and Arrhythmias Chapter 12 Sinus Node Dysfunction SECTION II Cardiac Rhythms and Arrhythmias Chapter 12 Sinus Node Dysfunction SAROJA BHARATI, NORA GOLDSCHLAGER, FRED KUSUMOTO, RALPH LAZZARA, RABIH AZAR, STEPHEN HAMMILL, and GERALD NACCARELLI Epidemiology: Nora Goldschlager, Fred Kusumoto, and Rabih Azar Anatomy and Pathology: Saroja Bharati Basic Electrophysiology: Ralph Lazzara Etiology: Nora Goldschlager, Fred Kusumoto, and Rabih Azar Diagnostic Evaluation: Gerald Naccarelli Clinical Electrophysiology: Stephen Hammill Evidence-Based Therapy: Nora Goldschlager, Fred Kusumoto, and Rabih Azar In the early 1900s Keith and Flack identified the sinus due to the decrease in vagal tone that occurs with node as the region responsible for activation of the increasing age. heart.1 Laslett first suggested sinus node dysfunction as Sinus node dysfunction should be suspected when a a cause of bradycardia in 1909, and during the 1950s patient describes symptoms of fatigue, syncope or pre- and 1960s Short, Ferrer, Lown, and others described syncope, or exercise intolerance and is noted to have the clinical spectrum of sinus node dysfunction that is sinus bradycardia or pauses on the 12-lead ECG or dur- commonly called the “sick sinus syndrome resting sinus ing Holter monitoring. In general, symptomatic sinus bradycardia.”2-5 Sinus node dysfunction can have multi- node dysfunction increases with age, with the incidence ple electrocardiographic manifestations including sinus doubling between the fifth and sixth decades of life. pauses, the bradycardia-tachycardia syndrome, and inap- In one study of approximately 9000 patients visiting propriate sinus node response to exercise (chronotropic a regional cardiac center in Belgium, Kulbertus et al. incompetence). estimated that the incidence of sinus node dysfunction is less than 5 per 3000 people older than 50 years of age.9 However, sinus node dysfunction is more com- Epidemiology monly identified today because of an increased elderly population and increased physician awareness. In a It can be difficult to differentiate sinus node dysfunc- 1997 survey, sinus node dysfunction accounted for tion from physiologic sinus bradycardia in a specific approximately 50% of the 150,000 new pacemakers population. In a study of 50 young adult males, 24-hour implanted in the United States and 20% to 30% of the ambulatory electrocardiographic monitoring revealed 150,000 new pacemakers implanted in Europe.10,11 that 24% of the study group had transient heart rates Although more common in elderly patients, it is less than 40 beats per minute (bpm), pauses up to important to note that several specific younger patient 1.7 seconds while awake, and 2.1-second pauses while groups can also have sinus node dysfunction. First, asleep.6 Similarly, in a study of 50 young adult women, patients with congenital heart disease can have sinus pauses from 1.6 to 1.9 seconds were observed.7 In older node dysfunction. In 39 patients younger than 40 years asymptomatic individuals, transient heart rates less than of age who underwent pacemaker implant for sinus node 40 bpm and pauses of 1.5 to 2.0 seconds were observed dysfunction at the Mayo Clinic, 64% had associated in less than 2%.8 The decreased incidence of nocturnal congenital heart disease.12 The most common condition bradycardia in this normal elderly population is probably was transposition of the great arteries corrected by a 207 208 Cardiac Rhythms and Arrhythmias Mustard operation, since this procedure requires exten- surrounding atrial myocardial cells, and the striations sive atriotomies. Second, several familial forms of sinus are scarce but do increase with age. There are no inter- node dysfunction have been identified and account calated discs at the light microscopic level. The cells lie for approximately 2% of patients who present with in a massive amount of thick collagenous and thinner sinus node dysfunction.13-15 Bharati et al. described a elastic fibers.18-22 family with congenital absence of sinus rhythm. Several There are fewer myofibrils at the electron micro- other investigators have described different forms of scopic level as compared with the atrial cells. The sinus node dysfunction that appeared to be geneti- myofibrils are arranged in a disorganized pattern with a cally transmitted.13 Finally, sinus node dysfunction is lesser number of mitochondria, which are also disor- observed in approximately 4% of patients after cardiac ganized. The sarcoplasmic reticulum is poorly devel- transplant.16,17 Some, but not all, studies have found oped, and there is no transverse tubular system. There that a heart from a donor older than 40 years of age are very few fascia adherents and scant gap junctions, is associated with a higher incidence of sinus node and toward the periphery there are transitional cells, dysfunction requiring permanent cardiac pacing.16,17 which finally end in atrial cells.18-20 BLOOD SUPPLY Anatomy The SA node is supplied by way of ramus ostii cavae The sinoatrial (SA) node is situated in the sulcus ter- superioris (SA nodal artery) and reinforced by other minalis between the superior vena cava and the right atrial branches, and branches from the bronchial arter- atrial appendage in a somewhat curved fashion and ies. In addition, Kugel’s artery, a branch from the left extends from the hump of the atrial appendage, taper- coronary artery, also supplies the SA node. The ramus ing toward the inferior vena cava (Fig. 12-1A). The SA ostii cavae superioris originates in about 55% of cases node is a sizable structure, and although it is situated from the right coronary artery and in 45% of cases from epicardially, some of the fibers may extend deep the left coronary artery.18-22 There are nerve cells and intramyocardially. At the gross level, the SA node can- fibers evident in the periphery of the node. Nerve fibers not be dissected. It can be identified at the light micro- are present in the midst of the head of the SA node.18-23 scopic level; it consists of small fusiform cells, distinctly smaller than the surrounding atrial myocardial cells, PATHOLOGY arranged to a considerable extent along the line of the sulcus terminalis but also serpiginously surrounding The anatomic base of supraventricular arrhythmias may the SA nodal artery. The cytoplasm of the cells stain lie in the SA node and its approaches, as well as in the lighter than do the atrial myocardial cells (see Fig. 12-1B). atrial preferential pathways, the approaches to the atrio- The myofibrils are distinctly less prominent than the ventricular (AV) node, and the AV node. Although at SVC SA node R. atrium Intercaval band AB FIGURE 12-1 A, Diagrammatic sketch of location of sinoatrial (SA) node. R. atrium, right atrium; SA node, sinoatrial node; SVC, superior vena cava. B, Transverse section through the SA node and its approaches. Hematoxylin-eosin stain ×50. Arrows point to the SA nodal artery. A, atrial myocardium; SA, sinoatrial node. (From Lev M: The conduction system. In Gould SE (ed): Pathology of the Heart and Blood Vessels, 3rd ed. Springfield, Ill, Charles C Thomas, 1968.) Sinus Node Dysfunction 209 the moment there is no pathologic specificity for any one of the atrial arrhythmias, it would appear that the same type of pathology may be responsible for both bradyarrhythmias and tachyarrhythmias on different occasions.23 Rarely, sinus node dysfunction can be familial13 (Fig. 12-2). SICK SINUS SYNDROME IN THE YOUNG Although sick sinus syndrome is usually seen in the elderly, it may be seen in the young as well. Pathologically, a marked increase in connective tissue is found, with fat in the approaches to the SA node, the atrial preferen- R tial pathways, and approaches to the AV node. The pen- etrating AV bundle may be septated. In other cases an M increased amount of fat in other parts of the atria, as F well as around the SA and AV nodes, is seen.24 SICK SINUS SYNDROME IN THE ELDERLY-AGING In older patients with sick sinus syndrome, significant coronary artery disease is usually present; however, the basic pathology is variable. An abnormal formation of the atrial septum, resulting in fibrosis in the approaches to the SA and AV nodes and atrial preferential pathways, may be seen, or there may be similar findings within these structures along with fat. With advancing age, FIGURE 12-2 Histologic characteristics of the sinoatrial (SA) nodal area in a 72-year-old male member of a family with there may be loss of cells to a varying extent in the congenital absence of sinus rhythm and a tendency to SA and AV nodes and their approaches and in the develop atrial fibrillation at an early age who collapsed rising surrounding atrial myocardium, with replacement by from a chair and could not be resuscitated. He had a history fat and fibrosis, associated with varying degrees of focal of atrial fibrillation, at first paroxysmal and later chronic for hypertrophy or atrophy of myocardium (Fig. 12-3). In 18 years, but was only mildly incapacitated. Note the frag- addition, arteriolosclerosis, necrosis, or chronic inflam- mented SA node. Weigert-van Gieson stain ×30. F, fat; mation may be present in the atria.25-27 M, atrial myocardium; R, remnant of SA node. (From Bharati S, Surawicz B, Vidaillet, HJ, Lev M: Familial congenital sinus rhythm anomalies, clinical and pathological correlations. SENILE AMYLOIDOSIS Pacing Clin Electrophysiol 1993;15:1720-9). This is a type of primary amyloidosis seen in patients older than 80 years of age. It affects the atrial FIGURE 12-3 Fat accumulation around the SA node and replacement of SA node by fat with almost total separation of SA node from its approaches in an elderly patient with sick sinus syndrome. Weigert-van Gieson stain ×45. F, fat; N, SA node; RA, right atrium. Arrows point to the isolated SA node with marked fat in and around the node.
Recommended publications
  • Clinical Significance of Exit Block*
    Clinical Significance of Exit Block* IRANY M. DE AZEVEDO, M.D. YOSHIO WATANABE, M.D. LEONARD S. DREIFUS, M.D. From the Departments of Medicine, Physiology, and Biophysics, Hahnemann Medical College, Philadelphia, Pennsylvania The confinement of an ectopic discharge to its ily reserved for ectopic pacemakers, rather than the focus, and its consequent inability to invade the ad­ sinus node. jacent myocardium when falling outside of the re­ High Grade Atrioventricular Block. In vi rtu­ fractory period of the heart, is a well established ally all instances, exit block occurs in the presence phenomenon called "exit block." This cardiac ar­ of higher degrees of A-V block. Failure of the rhythmia was originally described by Kaufmann impulse to propagate from the subsidiary ectopic and Rothberger ( 8) to explain the failure of a para­ focus to either the ventricles, atria, or both is char­ systolic focus to activate the heart. All pacemakers acteristic of this form of exit block. Several exam­ are subject to exit block (9, 13, 15, 14, 11 , 16, 12, ples are illustrated. In figure 2, there is high grade 3, 10, 7, 1), however, by convention, conduction A-V block causing A-V dissociation. The atria are disturbances involving the sinus node (S-A block) under the control of the sinus node at a rate of 71 are usually excluded from this concept, and the term per minute, and the ventricles are controlled by a is reserved for ectopic pacemakers. Recent electro­ subsidiary ectopic pacemaker, probably originating physiological and clinical studies have shown that in the right bundle branch at a rate of approximately exit block may complicate reentrant arrhythmias and 40 per minute.
    [Show full text]
  • Spontaneous Resolution of Sinoatrial Exit Block and Atrioventricular Dissociation in a Child with Dengue Fever Kaushik J S, Gupta P, Rajpal S, Bhatt S
    Case Report Singapore Med J 2010; 51(9) : e146 Spontaneous resolution of sinoatrial exit block and atrioventricular dissociation in a child with dengue fever Kaushik J S, Gupta P, Rajpal S, Bhatt S ABSTRACT her heart rate was regular at 92/min, respiratory rate at Cardiac rhythm abnormalities, including 22/min and blood pressure (BP) at 110/74 mmHg. There ventricular arrhythmia, atrial fibrillation and was a petechial rash over the patient’s back, trunk and atrioventricular block, have been observed upper extremities. The Hess test (tourniquet test) for during the acute stage of dengue haemorrhagic capillary fragility was positive. Systemic examination fever. Atrioventricular or complete heart did not reveal any abnormality. block can be fatal and may require a temporary Investigations revealed normal haemoglobin (12.1 pacemaker. We report a ten-year-old girl who g/dl), haematocrit (35.2%) and leucocyte (6500/cumm) presented with dengue haemorrhagic fever counts, while the platelet count was observed to be with sinoatrial block and atrioventricular low (38000/cumm). Dengue serology was reactive dissociation that had a spontaneous resolution. for immunoglobulin G (IgG) and immunoglobulin M (IgM), suggesting acute primary infection. The liver Keywords: atrioventricular block, enzymes and renal profile, including serum electrolytes, atrioventricular dissociation, dengue were normal. The patient was managed supportively haemorrhagic fever, rhythm abnormality, according to the World Health Organization (WHO) sinoatrial block recommendations for management of dengue Singapore Med J 2010; 51(8): e146-e148 haemorrhagic fever.(3) The following day, the patient was observed to have INTRODUCTION bradycardia (pulse rate 50/min, regular), with normal Dengue fever is a viral infection that is transmitted BP.
    [Show full text]
  • Cardiac Arrhythmia
    Cardiac Arrhythmia How to approach นพ.พินิจ แกวสุวรรณะ หน่วยโรคหัวใจและหลอดเลือด EKG paper is a grid where time is measured along the horizontal axis. Each small square is 1 mm in length and represents 0.04 seconds. Each larger square is 5 mm in length and represents 0.2 seconds. Voltage is measured along the vertical axis Voltage is measured along the vertical axis. 10 mm is equal to 1mV in voltage. The diagram below illustrates the configuration of EKG graph paper and where to measure the components of the EKG wave form P wave Indicates atrial depolarization, or contraction of the atrium. Normal duration is not longer than 0.11 seconds (less than 3 small squares) Amplitude (height) is no more than 3 mm No notching or peaking QRS complex Indicates ventricular depolarization, or contraction of the ventricles. Normally not longer than .10 seconds in duration Amplitude is not less than 5 mm in lead II or 9 mm in V3 and V4 R waves are deflected positively and the Q and S waves are negative T wave Indicates ventricular repolarization Not more that 5 mm in amplitude in standard leads and 10 mm in precordial leads Rounded and asymmetrical ST segment Indicates early ventricular repolarization Normally not depressed more than 0.5 mm May be elevated slightly in some leads (no more than 1 mm) PR interval Indicates AV conduction time Duration time is 0.12 to 0.20 seconds QT interval Indicates repolarization time General rule: duration is less than half the preceding R-R interval Sinus Bradycardia Rate40-59 bpm P wavesinus QRSnormal (.06-.12) ConductionP-R normal or slightly prolonged at slower rates Rhythmregular or slightly irregular This rhythm is often seen as a normal variation in athletes, during sleep, or in response to a vagal maneuver.
    [Show full text]
  • View Pdf Copy of Original Document
    Phenotype definition for the Vanderbilt Genome-Electronic Records project Identifying genetics determinants of normal QRS duration (QRSd) Patient population: • Patients with DNA whose first electrocardiogram (ECG) is designated as “normal” and lacking an exclusion criteria. • For this study, case and control are drawn from the same population and analyzed via continuous trait analysis. The only difference will be the QRSd. Hypothetical timeline for a single patient: Notes: • The study ECG is the first normal ECG. • The “Mildly abnormal” ECG cannot be abnormal by presence of heart disease. It can have abnormal rate, be recorded in the presence of Na-channel blocking meds, etc. For instance, a HR >100 is OK but not a bundle branch block. • Y duration = from first entry in the electronic medical record (EMR) until one month following normal ECG • Z duration = most recent clinic visit or problem list (if present) to one week following the normal ECG. Labs values, though, must be +/- 48h from the ECG time Criteria to be included in the analysis: Criteria Source/Method “Normal” ECG must be: • QRSd between 65-120ms ECG calculations • ECG designed as “NORMAL” ECG classification • Heart Rate between 50-100 ECG calculations • ECG Impression must not contain Natural Language Processing (NLP) on evidence of heart disease concepts (see ECG impression. Will exclude all but list below) negated terms (e.g., exclude those with possible, probable, or asserted bundle branch blocks). Should also exclude normalization negations like “LBBB no longer present.”
    [Show full text]
  • IHEU-IHES-IHP Front Matter
    IHEU unique 7/13/06 12:03 PM Page i 2007 ICD-9-CM Expert for Hospitals Volumes 1, 2 & 3 International Classification of Diseases 9th Revision Clinical Modification Sixth Edition Edited by: Anita C. Hart, RHIA, CCS, CCS-P Beth Ford, RHIT, CCS Ingenix is committed to providing you with the ICD-9-CM code update information you need to code accurately and to be in compliance with HIPAA regulations. In the case of adoption of additional ICD-9-CM code changes effective April 1, 2007, Ingenix will provide these code changes to you at no additional cost! Just check back at http://www.IngenixOnline.com and look for the ICD-9, CPT® and HCPCS Alerts link under the Quick Access Resources menu to review the latest information concerning any new code changes. Codes Valid October 1, 2006, through September 30, 2007 October 2006 Update 3539/IHEU/U0515 07 ICD9 v1 H 7/11/06 2:24 PM Page 127 Tabular List CIRCULATORY SYSTEM 425.8–426.89 Circulatory System 425.8–426.89 Nerve Conduction of the Heart Normal and Long QT Electrocardiogram QRS Interval ST Interval Normal Long QT R Syndrome R PR Sinoatrial node Segment QT Interval QT Interval (pacemaker) Bachmannʼs bundle PR ST Interval Segment Internodal tracts: Anterior T Middle P T P Posterior Left bundle branch block Left bundle branch: Atrioventricular Q node Anterior fascicle Q Common bundle Posterior fascicle S (of His) S Left bundle branch Atrioventricular block hemiblock 0.2.4.6 0.2.4.6 Accessory bundle MC (of Kent) 426.3 ¥>Other left bundle branch block Right bundle branch Left bundle branch block: Right
    [Show full text]
  • Adams-Stokes Syndrome Caused by Sinoatrial Block
    Br Heart J: first published as 10.1136/hrt.35.10.1002 on 1 October 1973. Downloaded from British Heart Journal, 1973, 35, I002-I008. Adams-Stokes syndrome caused by sinoatrial block Bjarne Sigurd, Gorm Jensen, J0rgen Meibom, and Erik Sand0e From Medical Department B, Rigshospitalet, University of Copenhagen, Denmark Forty-six patients with syncope and/or black-out episodes due to sinoatrial block are presented. Male-to- female ratio was i to i, and mean age at onset of symptoms approximately 63 years in both sexes. Additional heart disease, especially coronary artery disease, was frequently, but not constantly, found. Twenty-five per cent had sinus node dysfunction as the only manifestation of cardiac disease. Ninety per cent had frequent paroxysms of one or several types of a wide spectrum of supraventricular dysrhythmias, which often gave rise to troublesome symptoms in the form of palpitation, fatigue, and/or congestion, but also made it easier to recognize the cardiac origin of the unspecific cerebral symptoms. Cerebral symptoms occurred suddenly and unexpectedly, and often disabled the patients to a severe degree. Drug treatment proved of little value, but pacemaker treatment stopped the cerebral attacks in all the 39 cases in which it was performed. In 3 out of 24 patients pacemaker implantation also abolished the tendency for paroxysms of tachydysrhythmias; in the remaining 2I it allowedfor maximal drug treatment which led to nearly total relieffrom tachydysrhythmias in 17. copyright. Attacks of third-degree sinoatrial block, resulting in Patients cerebral ischaemic symptoms, account for I0 to 20 There were 46 patients with a chronic, intermittent per cent of all cases, in which artificial pacemakers tendency to syncope and/or black-out episodes, assumed are considered necessary (Rasmussen, 197I; Jen- to be caused by paroxysms of third-degree sinoatrial sen et al., I973).
    [Show full text]
  • Sinus Bradycardia
    British Heart Journal, I97I, 33, 742-749. Br Heart J: first published as 10.1136/hrt.33.5.742 on 1 September 1971. Downloaded from Sinus bradycardia Dennis Eraut and David B. Shaw From the Cardiac Department, Royal Devon and Exeter Hospital, Exeter, Devon This paper presents thefeatures of 46 patients with unexplained bradycardia. Patients were ad- mitted to the study if their resting atrial rate was below 56 a minute on two consecutive occasions. Previous electrocardiograms and the response to exercise, atropine, and isoprenaline were studied. The ages of thepatients variedfrom I3 to 88years. Only 8 had a past history ofcardiovascular disease other than bradycardia, but 36 hJd syncopal or dizzy attacks. Of the 46 patients, 35 had another arrhythmia in addition to bradycardia; at some stage, i6 had sinus arrest, i.5 hadjunc- tional rhythm, 12 had fast atrial arrhythmia, I6 had frequent extrasystoles, and 6 had atrio- ventricular block. None had the classical features of sinoatrial block. Arrhythmias were often produced by exercise, atropine, or isoprenaline. Drug treatment was rarely satisfactory, but only i patient needed a permanent pacemaker. It is suggested that the majority of the patients were suffering from a pathological form of sinus bradycardia. The aetiology remains unproven, but the most likely explanation is a loss of the inherent rhythmicity of the sinoatrial node due to a primary degenerative disease. The descriptive title of 'the lazy sinus syndrome' is suggested. copyright. Bradycardia with a slow atrial rate is usually attempt to define the clinical syndrome of regarded as an innocent condition common in bradycardia with a pathologically slow atrial certain types of well-trained athlete, but occa- rate and to clarify the nature of the arrhyth- sionally it may occur in patients with symp- mia.
    [Show full text]
  • Dysrhythmias
    CARDIOVASCULAR DISORDERS DYSRHYTHMIAS I. BASIC PRINCIPLES OF CARDIAC CONDUCTION DISTURBANCES A. Standard ECG and rhythm strips 1. Recordings are obtained at a paper speed of 25 mm/sec. 2. The vertical axis measures distance; the smallest divisions are 1 mm ×1 mm. 3. The horizontal axis measures time; each small division is 0.04 sec/mm. B. Normal morphology Courtesy of Dr. Michael McCrea 1. P wave = atrial depolarization a. Upright in leads I, II, III, aVL, and aVF; inverted in lead aVR b. Measures <0.10 seconds wide and <3 mm high c. Normal PR interval is 0.12–0.20 seconds. 2. QRS complex = ventricular depolarization a. Measures 0.06-0.10 seconds wide b. Q wave (1) <0.04 seconds wide and <3 mm deep (2) Abnormal if it is >3 mm deep or >1/3 of the QRS complex. c. R wave ≤7.5 mm high 3. QT interval varies with rate and sex but is usually 0.33–0.42 seconds; at normal heart rates, it is normally <1/2 the preceding RR interval. 4. T wave = ventricular repolarization a. Upright in leads I, II, V3–V6; inverted in aVR b. Slightly rounded and asymmetric in configuration c. Measures ≤5 mm high in limb leads and ≤10 mm high in the chest leads 5. U wave = a ventricular afterpotential a. Any deflection after the T wave (usually low voltage) b. Same polarity as the T wave c. Most easily detected in lead V3 d. Can be a normal component of the ECG e. Prominent U waves may indicate one of the following: (1) Hypokalemia (<3 mEq/L) (2) Hypercalcemia (3) Therapy with digitalis, phenothiazines, quinidine, epinephrine, inotropic agents, or amiodarone (4) Thyrotoxicosis f.
    [Show full text]
  • Effects of Selective Site Pacing on Haemodynamic and Functional Recovery in Patients Requiring Permanent Right Ventricular Pacing
    Effects of Selective Site Pacing on Haemodynamic and Functional Recovery in Patients Requiring Permanent Right Ventricular Pacing Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Medicine by Klialed Albouaini 2011 Liverpool Heart and Chest Hospital NHS Trust Thomas Drive Liverpool L14 3PE Effects of Selective Site Pacing on Haemodynamic and Functional Recovery in Patients Requiring Permanent Right Ventricular Pacing. (International Standard Randomised Controlled Trial Registration Number: ISRCTN 67629267) The single centre randomised trial aimed to assess whether right ventricular outflow tract (RVOT) compared to right ventricular apical (RVA) pacing is more beneficial at the medium term follow-up. Fifty patients were randomised to either RVA (n—25) or RVOT (n=25) pacing. Baseline and 6 month follow-up investigations included: electrocardiogram, New York heart failure functional (NYHA) class, Minnesota Living with Heart Failure (MLWHF) score. Short Form-36 health survey (SF-36), echocardiogram, and a cardiopulmonary exercise test. The primary endpoint was peak oxygen consumption (PVO2). Secondary endpoints were: NYHA class, MLWHF and SF-36 scores, LVEF, and dyssynchrony criteria. There were no significant differences in changes in PVO2 levels between the study groups. Similarly, QRS duration changes were not significantly different between the study groups. In contrast, MLWHF scores improved significantly in the RVOT group (32 ± 19) compared with the RVA group (21 ± 22), P=0.041. In addition, SF-36 health survey indicated better scores in RVOT patients in the following areas: (1) Physical Function, 36.6 ± 28.0 (RVOT) versus 11.2 ± 26.0 (RVA), P = 0.005; (2) Role Limitation due to Emotional Problem scores, 43.3 ± 9.7 (RVOT) versus 4.5 ±11.6 (RVA arm), P = 0.016; (3) Vitality Energy Fatigue scores 26.3 ± 27.0 (RVOT) versus 7.2 ± 24.0 (RVA), P = 0.024.
    [Show full text]
  • The Evaluation of Sinoatrial Node Function 1N Man*
    The Evaluation of Sinoatrial Node Function 1n Man* J. THOMAS BIGGER, JR, M.D.t Associate Professor of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York HAROLD C. STRAUSS, M.D., C.M.t Associate in Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York The function of the sinoatrial node is com­ ence with the extracellular fluid and often shows plex. In nearly all hearts, this small bit of tissue is some overshoot, that is, the inside of the cell may responsible for spontaneously generating the impulse become slightly positive relative to the extracellular which will be distributed to the remainder of the potential. After reaching this peak inside-positive heart, maintaining coordinated electrical and me­ value of transmembrane voltage (V111 ), the sinus chanical function. In recent years, it has become node cell slowly repolarizes to a maximum inside­ clear that S-A node dysfunction is not rare, can negative value-so-called maximum diastolic volt­ cause disabling symptoms, and often presents diffi­ age. Then, the transmembrane voltage spontaneously cult management problems. The challenges pre­ begins to decrease ( phase 4 depolarization) until sented by the "Sick Sinus Syndromes" have in­ a critical value of V 111 , threshold voltage, is reached creased our desire to know more about normal and self-excitation recurs. The rate of recurring S-A node function and about function in disease self-excitation could theoretically be altered by states. changes in: 1) maximum diastolic voltage, 2) The intimate mechanisms of sinus node func­ threshold voltage, and 3) rate of phase 4 depolari­ tion remain a mystery despite the "prying eye" of the zation.
    [Show full text]
  • The Heart in Portuguese Amyloidosis
    Postgraduate Medical Journal (1986) 62, 601-605 Postgrad Med J: first published as 10.1136/pgmj.62.728.601 on 1 June 1986. Downloaded from The heart in Portuguese amyloidosis A. Falcao de Freitas School ofMedicine, Oporto University, 4200 Porto, Portugal. Summary: A systematic investigation was performed in patients with familial amyloidotic poly- neuropathy, Portuguese type (AFp) to assess the pattern and incidence of cardiac involvement. Of 327 patients investigated, ECG abnormalities were present in 285 (87.2%). Low voltage and QS pattern in V1, V2, V3 were found in 51.3% and 35.7% patients respectively. Conduction disturbances were present in 211 (64.5%). Sinus node disease, 1st degree and Wenckebach interventricular blocks were frequent. Complete atrioventricular block was observed in only 2 patients (0.6%). Left anterior hemi-block was present in 30.8%, left bundle branch block in 3.9%, left posterior hemi-block in 2.4% and right bundle branch block in 2.1%. Holter monitoring showed a much higher incidence of conduction disturbances, most of these occurring at night. The mean values of septum and posterior wall thickness and mass evaluated by echocardiography in 72 patients were normal. The systolic and diastolic global and regional functions, determined in 12 patients, analysing the echo by a digitization computer technique, were normal. In 7% a trivial pericardial effusion was observed. In 16 patients with ECG changes and normal echocardiograms the technetium 99m pyrophosphate scanning was negative. We conclude that the ECG is the most precise, sensitive and clinically useful method for detecting cardiac amyloidosis in patients with AFp.
    [Show full text]
  • Obesity and Cardiac Disease OBESITY • Higher Prevalence of Cardiovascular Disease in Obese Individuals • There Are Several W
    05/07/2018 OBESITY Obesity and • Higher prevalence of Cardiac Disease cardiovascular disease in obese individuals MARY N SHEPPARD ST GEORGE’S MEDICAL • There are several ways in which SCHOOL, LONDON obesity directly affects the m.sheppard@sgul.ac.uk cardiovascular system 7/5/2018 OBESITY 2018 1 7/5/2018 OBESITY 2018 3 7/5/2018 OBESITY 2018 2 7/5/2018 OBESITY 2018 4 1 05/07/2018 7/5/2018 OBESITY 2018 5 7/5/2018 OBESITY 2018 7 7/5/2018 OBESITY 2018 6 7/5/2018 OBESITY 2018 8 2 05/07/2018 OBESITY AND HEART DISEASE • Obesity affects 20% of the population aged under 35 in the UK. • In our cohort of young unexpected SCDs, 20% of individuals were obese. • SADS was the most common post-mortem finding in young obese individuals, • High burden of unexplained LVH and CAD 7/5/2018 OBESITY 2018 9 7/5/2018 OBESITY 2018 11 OBESITY AND SCD ♥ Body weight affects heart weight ♥ Obesity and electrical instability and prolonged QT interval has been described previously, ♥ The QT prolongation is one of the mechanisms underlying fatal arrhythmias in obese individuals with a structurally normal heart ♥ Unexplained LVH was more frequently observed in obese young ♥ CAD is more prevalent in obese young people. ♥ SCD in young obese individuals occurs frequently without antecedent symptoms or a significant past medical history 7/5/2018 OBESITY 2018 10 7/5/2018 OBESITY 2018 12 3 05/07/2018 Sudden Cardiac Death 500,000 deaths in UK 50,000 SCD in the UK CORONARY ARTERY DISEASE 81% Bowker, Sheppard,Wood, Davies et al JRSM 2003 BHF study CRY DEPT.
    [Show full text]