Monophyly, Distance and Character–Based Multigene Barcoding Reveal Extraordinary Cryptic Diversity in Nassarius: a Complex and Dangerous Community
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Do Singapore's Seawalls Host Non-Native Marine Molluscs?
Aquatic Invasions (2018) Volume 13, Issue 3: 365–378 DOI: https://doi.org/10.3391/ai.2018.13.3.05 Open Access © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article Do Singapore’s seawalls host non-native marine molluscs? Wen Ting Tan1, Lynette H.L. Loke1, Darren C.J. Yeo2, Siong Kiat Tan3 and Peter A. Todd1,* 1Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 2Freshwater & Invasion Biology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #02-05, Singapore 117543 3Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore 117377 *Corresponding author E-mail: [email protected] Received: 9 March 2018 / Accepted: 8 August 2018 / Published online: 17 September 2018 Handling editor: Cynthia McKenzie Abstract Marine urbanization and the construction of artificial coastal structures such as seawalls have been implicated in the spread of non-native marine species for a variety of reasons, the most common being that seawalls provide unoccupied niches for alien colonisation. If urbanisation is accompanied by a concomitant increase in shipping then this may also be a factor, i.e. increased propagule pressure of non-native species due to translocation beyond their native range via the hulls of ships and/or in ballast water. Singapore is potentially highly vulnerable to invasion by non-native marine species as its coastline comprises over 60% seawall and it is one of the world’s busiest ports. The aim of this study is to investigate the native, non-native, and cryptogenic molluscs found on Singapore’s seawalls. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
Arakawa, Kohman Y. Citation PUBLICATIONS of the SETO
Title STUDIES ON THE MOLLUSCAN FAECES (II) Author(s) Arakawa, Kohman Y. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(1): 1-21 Issue Date 1965-06-30 URL http://hdl.handle.net/2433/175396 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University STUDIES ON THE MOLLUSCAN FAECES (II) KORMAN Y. ARAKAwA Hiroshima Fisheries Experimental Station, Kusatsu-minami-cho, Hiroshima, Japan With Plates I-VI and 5 Text-figures The work recorded in this paper is a continuation of the study on the molluscan faecal pellets, which has already been presented partly in a preliminary communication (ARAKAWA, 1962) and an initial paper of this series (ARAKAWA, '63). In this paper are included the descriptions of the pellets of fourty-four more molluscan species which were collected at several locations in the Seto Inland Sea and the vicinities in these four years. Before passing to the descriptions, I wish to express my cordial thanks to the following gentlemen who offered me facilities or help in earring out the present work: Dr. Toshijiro KAWAMURA (Hiroshima University), Dr. Ryozo YAGIU (Hiroshima Univ.) Dr. Takasi ToKIOKA (Seto Marine Biological Labora tory), Dr. Yoshimitsu 0GASAWARA (Naikai Regional Fisheries Research Lab.), Dr. Huzio UTINOMI (Seto Mar. Bioi. Lab.), Mr. Nobuo MATSUNAGA (Isumi Senior High School), Dr. Katura OYAMA (Geological Survey), Dr. Iwao T AKI (Hiroshima Univ.), Dr. Kikutaro BABA (Osaka Gakugei Univ.), Dr. Shigeru 0TA (National Pearl Research Lab.), Prof. Jiro SE:No (Tokyo Univ. of Fisheries) and Mr. Masa-aki HAMAr (Hiroshima Fish. Exp. Sta:). MATERIAL The scientific names, localities and types of faeces of respective species treated in this work are listed below. -
Turbinellidae
WMSDB - Worldwide Mollusc Species Data Base Family: TURBINELLIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-MURICOIDEA ------ Family: TURBINELLIDAE Swainson, 1835 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=276, Genus=12, Subgenus=4, Species=91, Subspecies=13, Synonyms=155, Images=87 aapta , Coluzea aapta M.G. Harasewych, 1986 acuminata, Turbinella acuminata L.C. Kiener, 1840 - syn of: Latirus acuminatus (L.C. Kiener, 1840) aequilonius, Fulgurofusus aequilonius A.V. Sysoev, 2000 agrestis, Turbinella agrestis H.E. Anton, 1838 - syn of: Nicema subrostrata (J.E. Gray, 1839) aldridgei , Vasum aldridgei G.W. Nowell-Usticke, 1969 - syn of: Attiliosa aldridgei (G.W. Nowell-Usticke, 1969) altocanalis , Coluzea altocanalis R.K. Dell, 1956 amaliae , Turbinella amaliae H.C. Küster & W. Kobelt, 1874 - syn of: Hemipolygona amaliae (H.C. Küster & W. Kobelt, 1874) angularis , Coluzea angularis (K.H. Barnard, 1959) angularis , Turbinella angularis L.A. Reeve, 1847 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angularis riiseana , Turbinella angularis riiseana H.C. Küster & W. Kobelt, 1874 - syn of: Leucozonia nassa (J.F. Gmelin, 1791) angulata , Turbinella angulata (J. Lightfoot, 1786) annulata, Syrinx annulata P.F. Röding, 1798 - syn of: Pustulatirus annulatus (P.F. Röding, 1798) aptos , Columbarium aptos M.G. Harasewych, 1986 - syn of: Coluzea aapta M.G. Harasewych, 1986 ardeola , Vasum ardeola A. Valenciennes, 1832 - syn of: Vasum caestus (W.J. Broderip, 1833) armatum , Vasum armatum (W.J. Broderip, 1833) armigera , Tudivasum armigera A. Adams, 1855 - syn of: Tudivasum armigerum (A. Adams, 1856) armigera , Turbinella armigera J.B.P.A. -
September 1997 Features Articles
September, 1997 Feature Articles Index (All items new this month) Micro Shells of Northern Australia by Patty Jansen. Using Abalone Radula to identify to species level by Daniel L. Geiger. “The Sanibel Kaleidoscope” by Whittkopf, Harlan E., 1997 Reviewed by Beatrice L. Burch Travel for Shell Collectors by Betty Jean Piech HMS Members attend COA Convention in Florida by George Cook Report on the July, 1997 COA Convention by Carole P. Marshall Report on the July, 1997 AMU/WSM joint meeting by Bea Burch Shellers in the News . Don Hemmes . W ayne Stevens. Mollusc Species Introduced in Hawaii . from paper by Vernon E. Brock in 1960. Micro Shells of Northern Australia Northern Australia Micro Shells by Patty Jansen* * E-mail [email protected] I created an internet site out of love for the microshell fauna of Australia. because so few people are interested in these beautiful little shells, because there is there is no popular literature available to identify them, and because very few people know any- thing about them. I am sharing part of my home page here for persons who may not have viewed it yet. You may desire to print it for your permanent use. My home page URL is http://www.internetnorth.com.au/filejest please visit as the site is con- stantly being expanded to include more micro shells. All images were scanned from my original line drawings or photographs. The shells are in my collection unless otherwise stated. The microshells of northern Australia are mostly unknown. Only a few articles have been published about them; and almost no microshells are mentioned in any of the popular books. -
An Annotated Checklist of Intertidal Reef Invertebrates from Marmion and Shoalwater Islands Marine Parks
Conservation Science W. Aust. 9 (2) : 201–213 (2014) An annotated checklist of intertidal reef invertebrates from Marmion and Shoalwater Islands marine parks ALAN J KENDRICK & MICHAEL J RULE Science and Conservation Division, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983. Email: [email protected] ABSTRACT An annotated checklist of 71 invertebrate species recorded from intertidal reefs in Marmion and Shoalwater Islands marine parks in the temperate south-west of Western Australia (WA) is presented, with information on their relative prevalence in the reserves and the habitats in which they were found. Most of the species have temperate distributions that extend across southern Australia and few are primarily tropical (at the southern limits of their distribution in the study area) to the study area. Twelve species are endemic to WA. This checklist will assist the development and implementation of long-term intertidal reef monitoring across WA’s temperate marine parks. Keywords: checklist, intertidal, marine protected area, monitoring INTRODUCTION succession as the reefs are recolonised (Hodgkin 1959b; Kohn 1993). The coastal geomorphology of the Perth region comprises Intertidal reef research has been carried out in the Perth sandy beaches and rocky headlands with a complex system region since the 1950s, with initial focus on Rottnest and of offshore islands, emergent rocks and subtidal reefs Carnac Islands (Marsh 1955; Hodgkin et al. 1959; Marsh formed by eroded limestone (Searle & Semeniuk 1985). & Hodgkin 1962). Scientific interest in intertidal The process of erosion has also formed shoreline and organisms at Rottnest Island has continued as it provides offshore intertidal platform reefs that are a distinctive numerous accessible study sites and the biota is influenced feature of this region (Playford 1988). -
Studies on Columbellidae
STUDIES ON COLUMBELLIDAE by EVELINE and ERNST MARCUS (with 8 plates) Contents Introduction ........................................................................................ 335 Systematic notes ............................................................................... 336 1. Anachis brasiliana (p. 337). 2. A. sparsa (p. 338). 3. A. obsea (p. 339). 41 A. veleda (p. 337). 5. N i- tidella dichroa (p. 338). 6 . Mitrella lunata (p. 339). 7. Columbella mercaloria (p. 340). 8 . C. rustica (p. 342). General remarks on the shells .................................................... 347 Head and foot ......................................................................... 347 Locomotion .......................................................................................... 350 Pallial organs .................................................................................... 351 Nervous system ................................................................................. 352 Alimentary tract ............................................................................. 355 Renal organ ........................................................................................ 360 Male reproductive organs ............................................................... 362 Female reproductive organs ............................................................ 366 Eggs and larvae ............................................................................... 369 Parasites ......................................................................................... -
DNA Barcoding Reveal Patterns of Species Diversity Among
www.nature.com/scientificreports OPEN DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs Received: 04 April 2016 Shao’e Sun, Qi Li, Lingfeng Kong, Hong Yu, Xiaodong Zheng, Ruihai Yu, Lina Dai, Yan Sun, Accepted: 25 August 2016 Jun Chen, Jun Liu, Lehai Ni, Yanwei Feng, Zhenzhen Yu, Shanmei Zou & Jiping Lin Published: 19 September 2016 This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes. -
The Coastal Marine Mollusc Fauna of King Island, Tasmania
Papers and Proceedings of the Royal Society of Tasmania, Volume 148, 2014 17 THE COASTAL MARINE MOLLUSC FAUNA OF KING ISLAND, TASMANIA by Simon Grove and Robert de Little (with one text-figure, one plate, one table and an appendix) Grove, S & de Little, R. 2014 (19:xii: The coastal marine mollusc fauna of King Island, Tasmania.Papers and Proceedings of the Royal Society of Tasmania 148: 17–42. https://doi.org/10.26749/rstpp.148.17 ISSN 0080-4703. Rosny Collections and Research Facility, Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart Tasmania 7001 (SG*); PO Box 683, Port Arthur Tasmania 7182 (RdL). *Author for correspondence. Email: [email protected] The findings of a week-long survey of coastal marine molluscs around King Island are documented. In total, 408 species were recorded, 78 for the first time. King Island appears to be the only Tasmanian outpost for 44 species. Only two non-native species were found. A number of usually distinct species-pairs or groups appear to form intergrades around King Island. Along the island’s east coast, beached shells belonging to Quaternary-era sub-fossils were found, not all of which are represented in the contemporary local fauna. Following critical examination of published sources and museum specimens, a checklist of King Island’s coastal marine mollusc fauna is presented, comprising 619 species. It is likely that many more local species await discovery and documentation. Key Words: Mollusca, King Island, Tasmania INTRODUCTION METHODS King Island sits in western Bass Strait at around 40°S and Field surveys and follow-up identification 144°E, and is a geographical outlier relative to the rest of Tasmania: it includes the westernmost shorelines in Tasmania, Twenty-one discrete localities were surveyed during 13–19 as well as some of the northernmost. -
Columbellidae
WMSDB - Worldwide Mollusc Species Data Base Family: COLUMBELLIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-BUCCINOIDEA ------ Family: COLUMBELLIDAE Swainson, 1840 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=2015, Genus=71, Subgenus=24, Species=746, Subspecies=37, Synonyms=1136, Images=525 abyssicola , Pyreneola abyssicola (J.W. Brazier, 1877) achatina , Mitrella achatina G.B. Sowerby, 1844 - syn of: Mitrella gervillii (B.C.M. Payraudeau, 1826) acicula, Aoteatilia acicula (H.H. Suter, 1908) acicula , Columbella acicula L.A. Reeve, 1858 - syn of: Graphicomassa ligula (P.L. Duclos, 1840) aciculata , Mazatlania aciculata J.B.P.A. Lamarck, 1822 - syn of: Mazatlania cosentini (R.A. Philippi, 1836) acleonta , Metanachis acleonta P.L. Duclos, 1835 - syn of: Metanachis jaspidea (G.B. II Sowerby, 1844) acuminata , Amphissa acuminata (E.A. Smith, 1915) acuminata , Mitrella acuminata K.T. Menke, 1843 acus , Aesopus acus L.A. Reeve, 1859 - syn of: Aesopus obesus (R.B. Hinds, 1844) acuta , Mitrella acuta W. Kobelt, 1889 - syn of: Mitrella gervillii (B.C.M. Payraudeau, 1826) acutecostata , Amphissa acutecostata (R.A. Philippi, 1844) acuticostata , Amphissa acuticostata R.A. Philippi, 1844 - syn of: Amphissa acutecostata (R.A. Philippi, 1844) acutocostata , Amphissa acutocostata R.A. Philippi, 1844 - syn of: Amphissa acutecostata (R.A. Philippi, 1844) adamsi, Nassarina adamsi (G.W. Tryon, 1883) adamsi, Parvanachis adamsi M. De Maintenon, 2014 adansoni , Columbella adansoni K.T. Menke, 1853 adela, Antimitrella adela (K.H.J. Thiele, 1925) adelinae , Anachis adelinae (G.W. Tryon, 1883) adiostina , Mitrella adiostina P.L. Duclos, 1835 - syn of: Graphicomassa albina (L.C. -
Marine Gastropods of American Samoa Introduction
Micronesica 41(2):237–252, 2011 Marine gastropods of American Samoa D.P. Brown Isle Royale National Park, Houghton, MI 49931 Abstract—Collected for food for over 3,000 years by the indigenous Samoan people, marine gastropods in American Samoa have never been collected and cataloged for science. This study documents 385 marine gastropods from 50 families occurring in the U.S. territory of American Samoa. Ten of these are listed by genus only and one by family. The num- ber of gastropods currently reported is likely significantly underestimated and a conservative estimate of the richness yet to be discovered. Introduction Molluscs have been collected in Samoa since the earliest inhabitants arrived some 3,000 years ago (Craig et al 2008, Kramer 1994, Kirch and Hunt, 1993, Nagaoka 1993). Much of this reef gleaning was directed at the cephalopods, the large and colorful giant clams (Tridacna spp.) and the larger marine snails such as Trochus spp, Lambis spp., Cassis spp., Turbo spp., and Tutufa spp., although any marine mollusc was likely taken if found (Munro 1999). While the limited archeological evidence provides an initial species list, this long history of the use of marine molluscs provided a very limited understanding of the marine gastro- SRGVRIWKHDUFKLSHODJR(YHQDIWHU(XURSHDQFRQWDFWIHZVHULRXVRUDPDWHXUVKHOO collectors made the long voyage to the S. Pacific to catalog the gastropoda. Until very recently, and before the advent of SCUBA, much of the gastropod knowledge in the area came from the shallow depths available to free-divers, what could be dredged off the bottom, and what washed onto the shore. The first organized sci- entific investigations into the Samoan gastropods weren’t carried out until the 18th century by the La Perouse expedition.