Is Graves' Disease a Primary Immunodeficiency?

Total Page:16

File Type:pdf, Size:1020Kb

Is Graves' Disease a Primary Immunodeficiency? Struja et al. BMC Medicine (2017) 15:174 DOI 10.1186/s12916-017-0939-9 REVIEW Open Access Is Graves’ disease a primary immunodeficiency? New immunological perspectives on an endocrine disease Tristan Struja1* , Alexander Kutz1, Stefan Fischli2, Christian Meier3,4, Beat Mueller1,3, Mike Recher3,5† and Philipp Schuetz1,3† Abstract Background: Uncertainty about factors influencing the susceptibility and triggers for Graves’ disease persists, along with a wide variation in the response to anti-thyroid drugs, currently at approximately 50% of non-responders. The aim of this narrative review is to summarize immunological concepts, with a combined endocrine and immunological perspective, to highlight potential new areas of research. Main text: Relevant studies were identified through a systematic literature search using the PubMed and EMBASE databases in March 2016. No cut-offs regarding dates were imposed. We used the terms “Graves’ Disease” or “Basedow” or “thyrotoxicosis” together with the terms “etiology”, “pathophysiology”, “immunodeficiency”, “causality”, and “autoimmunity”. The terms “orbitopathy”, “ophthalmopathy”, and “amiodarone” were excluded. Articles in English, French, German, Croatian, Spanish, and Italian were eligible for inclusion. Conclusions: While concepts such as the impact of iodine, smoking, human leucocyte antigen, infections, and ethnicity are established, new ideas have emerged. Pertaining evidence suggests the involvement of autoimmunity and immunodeficiency in the pathophysiology of Graves’ disease. Recent studies point to specific immunological mechanisms triggering the onset of disease, which may also serve as targets for more specific therapies. Keywords: Graves’ disease, Review, Etiology, Pathophysiology, Primary immunodeficiency Background (Table 1) [1]. The clinical penetrance of PID-associated Primary immunodeficiency diseases (PIDs) are genetic- gene mutations is far below 100% and novel mutations ally determined diseases impacting the normal function may occur during spermatogenesis or during oogenesis, of the immune system due to mutations in immune sys- implying that lack of a familial history does not argue tem genes. More than 250 PID entities have been against PIDs in a patient with autoimmunity. defined to date, with the number rapidly evolving. Many patients with a PID show their first clinical manifestation in adulthood and, in some patients, the PID is never di- Main text agnosed since it is not searched for. PIDs may clinically Literature search and inclusion criteria manifest in both childhood or adulthood and patients Relevant studies were identified through a systematic may present with a susceptibility to infection. However, literature search using the PubMed and EMBASE data- a significant number of PID patients present with auto- bases in March 2016. No cut-offs regarding dates were im- immune disease (AID) alone. The association of PIDs posed. We used the terms “Graves’ Disease” or “Basedow” with AIDs is mechanistically complex and multifactorial or “thyrotoxicosis” together with the terms “etiology”, “pathophysiology”, “immunodeficiency”, “causality”,and * Correspondence: [email protected] “autoimmunity”. The terms “orbitopathy”, “ophthalmopa- † Equal contributors thy”,and“amiodarone” were excluded. Articles in English, 1Medical University Department, Clinic for Endocrinology, Diabetes & Metabolism, Kantonsspital Aarau, Aarau, Switzerland French, German, Croatian, Spanish, and Italian were eli- Full list of author information is available at the end of the article gible for inclusion. © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Struja Table 1 Interplay of autoimmunity and immunodeficiency regarding Graves’ disease Primary immunodeficiency Phenotype Involved Protein/Synapse Gene Mechanism Association with Reference et al. BMC Medicine cell types Graves’ disease Selective IgA Celiac disease, type 1 diabetes B cells Ligation with its receptor (FcαRI) Most commonly Ligation with its receptor ++ [95, 96] deficiency mellitus, impaired mucosal Granulocytes leads to ADCC, granulocyte HLA haplotype 8.1 (FcαRI) leads to ADCC, defense, most common PID degranulation, phagocytosis granulocyte degranulation, and neutrophil oxidative burst phagocytosis and neutrophil oxidative burst Severe combined Recurrent infections, vitiligo, T cells Low expression of CD3γ gene Impaired negative selection +[59] (2017)15:174 immunodeficiency atopic dermatitis, ITP, AH, AITD T cell receptor in thymus Autoimmune Autoimmunity and polyclonal T cells Intra-thymic apoptosis via FASL Heterogeneous (1) Molecular mimicry or +[62–64] lymphoproliferative lymphocyte accumulation to its receptor FAS (CD95) and mutations of FAS (2) Slowing down of syndrome with lymphadenopathy subsequent activation of signaling pathway apoptosis and/or exposure and splenomegaly caspases 8 and 3 with impaired of apoptosis related T cell apoptosis autoantigens IPEX Immune dysregulation (eczema), Treg cells Loss of essential FOXP3 on X Greatly reduced Treg ++ [65] syndrome polyendocrinopathy (T1DM), Thymus transcription factor chromosome cell number enteropathy IPEX-like IPEX-like Treg cells IL-2-receptor-α CD25 deficiency Normal Treg in numbers +/– [67–70] phenotype chain (CD25) due to autosomal but deficient stimulation by recessive mutations defective IL-10 expression Common variable Various autoimmune diseases APCs CTLA-4 binds to CD80/CD86 (B7) CTLA-4 germline Treg cells increased, +[71, 75] immunodeficiency (ITP, AIHA, psoriasis, AITD, arthritis) Treg cells on APCs, leading to lower mutations with but dysfunctional and antibody deficiencies, B cells levels of co-stimulatory B7, incomplete (decreased CTLA-4 organ infiltration (bone marrow, Naïve T cells failure to activate CD28 penetrance ligand binding) kidney, brain, liver, spleen) by (the ligand for B7) granulomatous-lymphocytic on T cells infiltration Systemic lupus Recurrent infections; cutaneous, Macrophages MFG-E8 (mice) and Homozygous Impaired debris removal, +[76–79] erythematosus discoid lupus most common complement nonsense and -like presentation, malar rash, Apoptotic B factor C1q missense autoantibodies against C1q oral ulcers, recurrent cells mutations on correlates with thyroid fever and vasculitis chromosome 1p function in AITD (C1q) Common variable See above APCs BAFF BAFF (SNPs Higher levels stimulate B ++ [102–104, immunodeficiency Treg cells BAFF-R rs1041569 & cell survival, increase of 106, 107] B cells P21R variant rs2893321) TR antibody levels naïve T cells P21R (TNF-RSF13C allele) Hyper-IgM Elevated serum IgM, but deficiency APCs CD40 Autosomal Upregulation of CD40 +[5, 14, syndrome in IgG/A/E, recurrent respiratory T cells recessive CD40 on thyrocytes, increased 54, 108] and gastrointestinal infections B cells gene mutations co-stimulatory effects with pyogenic bacteria and Thyrocytes and immunoglobulin opportunistic organisms class switching Page 2 of 15 (e.g., P. jirovecii) Table 1 Interplay of autoimmunity and immunodeficiency regarding Graves’ disease (Continued) Struja Common variable Decreased Higher ICAM-1, [109, et al. BMC Medicine immunodeficiency methylation decreased B cell 120, 121] See above APCs Miscellaneous of various genes class switching +/– Treg cells B cells Naïve T cells Skewed X- Wiskott–Aldrich syndrome: Thymus Miscellaneous Genes for Reduced thymic ++ [118, 119] (2017)15:174 chromosome PID with eczema, T cells Wiskott–Aldrich expression of X inactivation thrombocytopenia, B cells syndrome protein, chromosome-dependent and diarrhea CD40L or the IL-2 self-antigens primes receptor-γ chain inadequate T cell apoptosis Trisomy 21 Down syndrome: Thymus IFN-γ AIRE and FOXP3 on Increased production ++ [51, 53, 66] increased susceptibility T cells X chromosome of IFN-γ with to leukemia, but reduced augmented Th1 incidence of solid tumors responses Reduced activity of Treg cells ADCC antibody dependent cellular cytotoxicity, AIHA autoimmune hemolytic anemia, AITD autoimmune thyroid disease, AH autoimmune hepatitis, APC antigen presenting cell, BAFF B-lymphocyte activating factor, CD cluster of differentiation, CTLA cytotoxic T-lymphocyte-associated protein, FasL type-II transmembrane protein of TNF family, FOXP3 forkhead box P3, HLA human leukocyte antigen, IL interleukin, IFN interferon, IPEX immunodysregulation polyendocrinopathy enteropathy X-linked, ITP immune thrombocytopenic purpura, MFG-E8 Milk fat globule epidermal growth factor 8, PID primary immunodeficiency, T1DM type 1 diabetes mellitus, TR thyrotropin related Page 3 of 15 Struja et al. BMC Medicine (2017) 15:174 Page 4 of 15 Immunologic view on exogenous factors associated with GD may be due to genetic variations and/or exposure Graves’ disease (GD) to local factors, but immigrants from lower risk re- In iodine-sufficient areas, GD is the most common cause gions acquire a similar risk over time as people in the of primary hyperthyroidism in the younger population new area of residence [11]. Analyses of National [2].
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • NIH Public Access Author Manuscript J Allergy Clin Immunol
    NIH Public Access Author Manuscript J Allergy Clin Immunol. Author manuscript; available in PMC 2008 December 12. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Allergy Clin Immunol. 2007 October ; 120(4): 776±794. doi:10.1016/j.jaci.2007.08.053. The International Union of Immunological Societies (IUIS) Primary Immunodeficiency Diseases (PID) Classification Committee Raif. S. Geha, M.D., Luigi. D. Notarangelo, M.D. [Co-chairs], Jean-Laurent Casanova, M.D., Helen Chapel, M.D., Mary Ellen Conley, M.D., Alain Fischer, M.D., Lennart Hammarström, M.D., Shigeaki Nonoyama, M.D., Hans D. Ochs, M.D., Jennifer Puck, M.D., Chaim Roifman, M.D., Reinhard Seger, M.D., and Josiah Wedgwood, M.D. Abstract Primary immune deficiency diseases (PID) comprise a genetically heterogeneous group of disorders that affect distinct components of the innate and adaptive immune system, such as neutrophils, macrophages, dendritic cells, complement proteins, NK cells, as well as T and B lymphocytes. The study of these diseases has provided essential insights into the functioning of the immune system. Over 120 distinct genes have been identified, whose abnormalities account for more than 150 different forms of PID. The complexity of the genetic, immunological, and clinical features of PID has prompted the need for their classification, with the ultimate goal of facilitating diagnosis and treatment. To serve this goal, an international Committee of experts has met every two years since 1970. In its last meeting in Jackson Hole, Wyoming, United States, following three days of intense scientific presentations and discussions, the Committee has updated the classification of PID as reported in this article.
    [Show full text]
  • Current Perspectives on Primary Immunodeficiency Diseases
    Clinical & Developmental Immunology, June–December 2006; 13(2–4): 223–259 Current perspectives on primary immunodeficiency diseases ARVIND KUMAR, SUZANNE S. TEUBER, & M. ERIC GERSHWIN Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis School of Medicine, Davis, CA, USA Abstract Since the original description of X-linked agammaglobulinemia in 1952, the number of independent primary immunodeficiency diseases (PIDs) has expanded to more than 100 entities. By definition, a PID is a genetically determined disorder resulting in enhanced susceptibility to infectious disease. Despite the heritable nature of these diseases, some PIDs are clinically manifested only after prerequisite environmental exposures but they often have associated malignant, allergic, or autoimmune manifestations. PIDs must be distinguished from secondary or acquired immunodeficiencies, which are far more common. In this review, we will place these immunodeficiencies in the context of both clinical and laboratory presentations as well as highlight the known genetic basis. Keywords: Primary immunodeficiency disease, primary immunodeficiency, immunodeficiencies, autoimmune Introduction into a uniform nomenclature (Chapel et al. 2003). The International Union of Immunological Societies Acquired immunodeficiencies may be due to malnu- (IUIS) has subsequently convened an international trition, immunosuppressive or radiation therapies, infections (human immunodeficiency virus, severe committee of experts every two to three years to revise sepsis), malignancies, metabolic disease (diabetes this classification based on new PIDs and further mellitus, uremia, liver disease), loss of leukocytes or understanding of the molecular basis. A recent IUIS immunoglobulins (Igs) via the gastrointestinal tract, committee met in 2003 in Sintra, Portugal with its kidneys, or burned skin, collagen vascular disease such findings published in 2004 in the Journal of Allergy and as systemic lupus erythematosis, splenectomy, and Clinical Immunology (Chapel et al.
    [Show full text]
  • Warning Signs of Primary Immunodeficiency for Specialty Care Physicians
    Juan Carlos Aldave, MD Allergy and Clinical Immunology Rebagliati Martins National Hospital, Lima-Peru [email protected] Warning signs of Primary Immunodeficiency for specialty care physicians The clinical presentation of PID can be diverse. However, there are clinical findings at the level of different organs and systems requiring PID suspicion; these findings must be quickly recognized by specialty care physicians: ALLERGY: Clinical manifestation Suspicion of PID Difficult-to-control asthma Selective IgA deficiency Common variable immunodeficiency (CVID) Specific antibody deficiency Recurrent or complicated sinusitis Antibody deficiencies Recurrent or complicated otitis Antibody deficiencies Eczema Wiskott-Aldrich syndrome Hyper-IgE syndrome Omenn syndrome IPEX ((immunodysregulation, polyendocrinopathy, enteropathy, X- linked syndrome) Netherton syndrome (ichthyosiform erythroderma, ichthyosis linearis, bamboo hair) Recurrent angioedema Hereditary angioedema (C1inh deficiency) Severe food and/or drug allergies DOCK8 defect (hyper-IgE syndrome) CARDIOLOGY: Clinical manifestation Suspicion of PID Congenital heart disease (interrupted DiGeorge syndrome aortic arch, pulmonary atresia, aberrant subclavian, tetralogy of Fallot) Congenital heart defects CHARGE syndrome (coloboma, heart defect, atresia choanae, retarded growth, genital hypoplasia, ear anomalies/deafness) THORACIC SURGERY: Clinical manifestation Suspicion of PID Thymoma and Good syndrome hypogammaglobulinemia Congenital heart disease (interrupted DiGeorge
    [Show full text]
  • Impaired Up-Regulation of CD25 on CD4 T Cells in IFN-␥ Autoimmune Diseases
    Impaired up-regulation of CD25 on CD4؉ T cells in IFN-␥ knockout mice is associated with progression of myocarditis to heart failure Marina Afanasyeva*†, Dimitrios Georgakopoulos†‡, Diego F. Belardi‡, Djahida Bedja§, DeLisa Fairweather*, Yan Wang*, Ziya Kaya*, Kathleen L. Gabrielson§, E. Rene Rodriguez*, Patrizio Caturegli*, David A. Kass‡, and Noel R. Rose*¶ʈ Departments of *Pathology, ‡Medicine, and §Comparative Medicine and the ¶W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205 Communicated by John W. Littlefield, Johns Hopkins University School of Medicine, Baltimore, MD, November 5, 2004 (received for review March 8, 2004) Inflammation has been recognized increasingly as a critical patho- damage and adverse cardiac remodeling, promoting heart fail- logic component of a number of heart diseases. A mouse model of ure. At the same time, IFN-␥ has been reported to exert direct autoimmune myocarditis was developed to study the role of negative inotropic effects on cardiomyocytes, possibly through immune mediators in the development of cardiac dysfunction. We activation of inducible nitric oxide synthase (13, 14). Based on have found previously that IFN-␥ deficiency promotes inflamma- the latter observation, the prediction can be made that IFN-␥ tion in murine myocarditis. It has been unclear, however, how deficiency is beneficial in a setting of cardiac inflammation. IFN-␥ deficiency in myocarditis affects cardiac function and what Furthermore, it is important
    [Show full text]
  • Regulatory T-Cell Therapy in Crohn's Disease: Challenges and Advances
    Recent advances in basic science Regulatory T- cell therapy in Crohn’s disease: Gut: first published as 10.1136/gutjnl-2019-319850 on 24 January 2020. Downloaded from challenges and advances Jennie N Clough ,1,2 Omer S Omer,1,3 Scott Tasker ,4 Graham M Lord,1,5 Peter M Irving 1,3 1School of Immunology and ABStract pathological process increasingly recognised as Microbial Sciences, King’s The prevalence of IBD is rising in the Western world. driving intestinal inflammation and autoimmunity College London, London, UK 2NIHR Biomedical Research Despite an increasing repertoire of therapeutic targets, a is the loss of immune homeostasis secondary to Centre at Guy’s and Saint significant proportion of patients suffer chronic morbidity. qualitative or quantitative defects in the regulatory Thomas’ NHS Foundation Trust Studies in mice and humans have highlighted the critical T- cell (Treg) pool. and King’s College, London, UK + 3 role of regulatory T cells in immune homeostasis, with Tregs are CD4 T cells that characteristically Department of defects in number and suppressive function of regulatory Gastroenterology, Guy’s and express the high- affinity IL-2 receptor α-chain Saint Thomas’ Hospitals NHS T cells seen in patients with Crohn’s disease. We review (CD25) and master transcription factor Forkhead Trust, London, UK the function of regulatory T cells and the pathways by box P-3 (Foxp3) which is essential for their suppres- 4 Division of Transplantation which they exert immune tolerance in the intestinal sive phenotype and stability.4–6
    [Show full text]
  • In Primary Immunodeficiencies
    IN PRIMARY IMMUNODEFICIENCIES Primary Immunodeficiency Diseases: an update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency Waleed Al-Herz, Aziz Bousfiha, jean-laurent Casanova, Helen Chapel, Mary Ellen Conley, Charlotte Cunningham-Rundles, Amos Etzioni, Alain Fischer, Jose Luis Franco, Raif Geha, Lennart Hammarstrom, Shigeaki Nonoyama, Luigi Daniele Notarangelo, Hans Dieter Ochs, Jennifer Puck, Chaim M Roifman, Reinhard Seger and Mimi Tang Journal Name: Frontiers in Immunology ISSN: 1664-3224 Article type: Opinion Article Received on: 18 Aug 2011 Frontiers website link: www.frontiersin.org Primary Immunodeficiency Diseases: an update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency Al-Herz W, 1 Bousfiha A, 2 Casanova JL, 3 Chapel H, 4 Conley ME, 5 Cunningham- Rundles C, 6 Etzioni A, 7 Fischer A, 8 Franco JL, 9 Geha RS, 10 Hammarström L, 11 Nonoyama S, 12 Notarangelo LD, 9,13 Ochs HD, 14 Puck JM, 15 Roifman C, 16 Seger R, 17 Tang MLK18 1 Department of Pediatrics, Faculty of Medicine, Kuwait University; and Allergy and Clinical Immunology Unit, Department of Pediatrics, Al-Sabah Hospital, Kuwait 2 Clinical Immunology Unit, Casablanca Children Hospital Ibn Rochd. Medical School, King Hassan II University, Casablanca, Morocco 3 St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; and Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, University Paris Descartes and Inserm U980, Paris, France, EU. 4 Clinical Immunology Unit, Nuffield Dept of Medicine, University of Oxford, UK 5 Department of Pediatrics, University of Tennessee College of Medicine; and Department of Immunology, St.
    [Show full text]
  • Laboratory Diagnosis of Primary Immunodeficiencies.Pdf
    Clinic Rev Allerg Immunol (2014) 46:154–168 DOI 10.1007/s12016-014-8412-4 Laboratory Diagnosis of Primary Immunodeficiencies Bradley A. Locke & Tr i v i k r a m D a s u & James W.Verbsky Published online: 26 February 2014 # Springer Science+Business Media New York 2014 Abstract Primary immune deficiency disorders represent a complex assays in clinical care, one must have a firm under- highly heterogeneous group of disorders with an increased standing of the immunologic assay, how the results are propensity to infections and other immune complications. A interpreted, pitfalls in the assays, and how the test affects careful history to delineate the pattern of infectious organisms treatment decisions. This article will provide a systematic and other complications is important to guide the workup of approach of the evaluation of a suspected primary immuno- these patients, but a focused laboratory evaluation is essential deficiency, as well as provide a comprehensive list of testing to the diagnosis of an underlying primary immunodeficiency. options and their results in the context of various disease Initial workup of suspected immune deficiencies should in- processes. clude complete blood counts and serologic tests of immuno- globulin levels, vaccine titers, and complement levels, but Keywords Primary immunodeficiency . Diagnosis . these tests are often insufficient to make a diagnosis. Recent Laboratory assessment . Flow cytometry advancements in the understanding of the immune system have led to the development of novel immunologic assays to aid in the diagnosis of these disorders. Classically utilized to Introduction enumerate lymphocyte subsets, flow cytometric-based assays are increasingly utilized to test immune cell function (e.g., Over the past 25 years, extensive research and technological neutrophil oxidative burst, NK cytotoxicity), intracellular cy- advancements have furthered the scientific understandings of tokine production (e.g., TH17 production), cellular signaling the immune system.
    [Show full text]
  • Cells in Human Stat5b Deficiency T High
    Cutting Edge: Decreased Accumulation and Regulatory Function of CD4 +CD25high T Cells in Human STAT5b Deficiency This information is current as Aileen C. Cohen, Kari C. Nadeau, Wenwei Tu, Vivian Hwa, of September 26, 2021. Kira Dionis, Liliana Bezrodnik, Alejandro Teper, Maria Gaillard, Juan Heinrich, Alan M. Krensky, Ron G. Rosenfeld and David B. Lewis J Immunol 2006; 177:2770-2774; ; doi: 10.4049/jimmunol.177.5.2770 Downloaded from http://www.jimmunol.org/content/177/5/2770 References This article cites 22 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/177/5/2770.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY CUTTING EDGE Cutting Edge: Decreased Accumulation and Regulatory Function of CD4؉CD25high T Cells in Human STAT5b Deficiency1 Aileen C.
    [Show full text]
  • Stem Cell Transplant Review Guidelines
    TRANSPLANT REVIEW GUIDELINES Hematopoietic Stem Cell Transplantation Effective November 1, 2017 THIS DOCUMENT IS PROPRIETARY AND CONFIDENTIAL TO OPTUM® Unauthorized use or copying without written consent is strictly prohibited. Printed copies are for reference only. Table of Contents Table of Contents Relative Contraindications ............................................................................................................ 3 Hematopoietic Stem Cell Transplant ........................................................................................... 5 General Information ............................................................................................................ 5 Chimeric Antigen Receptor T-cell Therapy……………………………………………………………………….7 Indications ........................................................................................................................... 7 Special Considerations ..................................................................................................... 18 Hematopoietic Stem Cell Transplant — Timing for Stem Cell Transplant Consultation ... 19 Appendix ....................................................................................................................................... 29 AIDS-defining Conditions .................................................................................................. 29 Clinical, Cytogenetic and Mutational Risk Stratification for AML ...................................... 31 The Dynamic International Prognostic Scoring System
    [Show full text]
  • 1949.Full.Pdf
    Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies This information is current as Stuart G. Tangye, Simon J. Pelham, Elissa K. Deenick and of October 2, 2021. Cindy S. Ma J Immunol 2017; 199:1949-1958; ; doi: 10.4049/jimmunol.1700842 http://www.jimmunol.org/content/199/6/1949 Downloaded from References This article cites 98 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/199/6/1949.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies Stuart G. Tangye, Simon J. Pelham, Elissa K. Deenick, and Cindy S. Ma Cytokine-mediated intracellular signaling pathways are domains of cytokine receptors and, after engagement by spe- fundamental for the development, activation, and dif- cific ligands, phosphorylate key tyrosine residues to pro- ferentiation of lymphocytes.
    [Show full text]