Identifying Cases of Spinal Cord Injury/Disorder in an Ontario Primary Care Electronic Medical Record Database

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Cases of Spinal Cord Injury/Disorder in an Ontario Primary Care Electronic Medical Record Database Identifying Cases of Spinal Cord Injury/Disorder in an Ontario Primary Care Electronic Medical Record Database by John Dean Shepherd A thesis submitted in conformity with the requirements for the degree of Master of Science Rehabilitation Sciences Institute University of Toronto © Copyright by John Shepherd 2020 Identifying Cases of Spinal Cord Injury/Disorder in an Ontario Primary Care Electronic Medical Record Database John Shepherd Master of Science Rehabilitation Sciences Institute University of Toronto 2020 Abstract Currently, little health system information exists on the longitudinal course of spinal cord injury (SCI). The increasing availability of information from electronic medical records (EMR) offers an opportunity to fill this gap. An initial keyword search of all eligible records in a database of primary care EMR in Ontario, Canada, was conducted to identify possible cases of SCI. A random sample of possible cases was selected (n=803) and reviewed using a structured chart review process. 126 validated cases of SCI were identified and this reference standard cohort was used to develop and test potential algorithms. The optimal algorithm uses a combination of free-text keywords and ICD-9 codes, with a sensitivity of 70.6%, a positive predictive value of 89.9%, and an F-score of 79.1%. This cohort can be linked with administrative data to study longitudinally the health status and health care utilization of this population. ii Acknowledgments The analysis documented in this thesis was the work of many people and I am grateful to all those who gave me support and guidance, and from whom I have learned so much. First and foremost, I owe a tremendous debt of gratitude to my supervisor, Dr. Susan Jaglal. She has been unfailing in her support at all times and without peer as a mentor. She has always encouraged me to follow my research interests and has equipped me with the tools to do so effectively. My committee members, Drs. Cathy Craven, Rahim Moineddin, and Karen Tu, have been extremely generous with their time and guidance, and provided many insightful suggestions and comments. I was fortunate to be able to build on the strong foundation of their prior work and the methods they shared with me. My work at ICES was supported by a very welcoming and helpful team including Jin Park, Bogdan Pinzaru, and Dinah Thorpe. I am particularly grateful to Senior Analyst Jacqueline Young, who skillfully and patiently guided me through the analytical process, and whose work is evident particularly in the results section of this thesis. I am also fortunate to have extremely supportive labmates and colleagues; I want to recognize in particular Drs. Sonya Allin, Leslie Carlin, and Sarah Munce, who each gave very generously of their time and expertise to provide feedback and suggestions on my drafts and to encourage me through the writing process. Finally, I want to thank my family: my parents Glen and Eleanor, my sister Elizabeth and her husband Johan, and my nieces Sanna and Alma; they have been, since long before the beginning of this project right through to the end, a source of encouragement, support, and joy. iii Table of Contents Acknowledgments .......................................................................................................................... iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................ vii List of Figures ................................................................................................................................ ix List of Appendices ...........................................................................................................................x Introduction .................................................................................................................................1 Background .................................................................................................................................3 2.1 Spinal Cord Injury as a Diagnostic Entity ...........................................................................3 2.1.1 Overview ..................................................................................................................3 2.1.2 Definition of SCI ......................................................................................................4 2.1.3 Traumatic and Non-traumatic SCI ...........................................................................6 2.1.4 Classification of SCI ................................................................................................8 2.2 Frequency of Spinal Cord Injury .........................................................................................8 2.2.1 Recent Studies of TSCI Incidence .........................................................................10 2.2.2 Prevalence of SCI ..................................................................................................10 2.2.3 Canadian Estimates of SCI Incidence and Prevalence ..........................................12 2.3 Longitudinal Patterns of Chronic SCI ................................................................................13 2.3.1 Individual Burden and Healthcare System Impact of Chronic SCI .......................13 2.3.2 Longitudinal Datasets in Chronic SCI ...................................................................14 2.3.3 Administrative Data Studies of SCI .......................................................................16 2.4 Using EMR Data for Research ..........................................................................................17 2.4.1 Primary Care EMR Databases ...............................................................................17 2.4.2 Issues with Case Finding in EMRs ........................................................................18 2.4.3 Problem List Use and Reliability ...........................................................................19 2.4.4 Case Finding in EMRALD ....................................................................................20 iv 2.4.5 Case Finding in SCI ...............................................................................................21 2.4.6 Case Finding Criteria in NTSCI ............................................................................22 2.5 Thesis Objectives ...............................................................................................................22 Methods .....................................................................................................................................24 3.1 Overview ............................................................................................................................24 3.1.1 Three-stage Case Identification/Algorithm Development Process ........................24 3.1.2 EMRALD Overview ..............................................................................................25 3.1.3 EMRALD Composition and Representativeness ...................................................25 3.1.4 Overview of EMRALD Charts ..............................................................................26 3.1.5 ICES Policies and Working Arrangements ............................................................27 3.1.6 Inclusion and Exclusion Criteria ............................................................................28 3.2 Stage 1—Keyword Search Strategy Development ............................................................28 3.2.1 Preliminary Chart Review: Round 1 ......................................................................29 3.2.2 Preliminary Chart Review: Round 2 ......................................................................29 3.2.3 Preliminary Chart Review: Round 3 ......................................................................30 3.2.4 Addition of NTSCI-Related Keywords from Literature ........................................31 3.3 Stage 2—Chart Review and Case Identification ...............................................................33 3.3.1 Considerations for Identification of Chronic SCI Cases ........................................33 3.3.2 Case Definition of Chronic SCI .............................................................................33 3.3.3 Chart Entries Used for Case Identification ............................................................35 3.3.4 Hierarchy of Evidence ...........................................................................................35 3.3.5 Developing a Reference Standard: Chart Review Process ....................................37 3.4 Stage 3—Algorithm Development ....................................................................................40 3.4.1 Keyword Analysis and Keyword Lists ..................................................................41 3.4.2 Other Algorithm Components Considered ............................................................43 3.4.3 Evaluating Algorithms ...........................................................................................44 v Results .......................................................................................................................................46 4.1 Stage 1—Keyword Search Strategy Development ............................................................46 4.1.1 Round 1 ..................................................................................................................46
Recommended publications
  • Retroperitoneal Approach for the Treatment of Diaphragmatic Crus Syndrome: Technical Note
    TECHNICAL NOTE J Neurosurg Spine 33:114–119, 2020 Retroperitoneal approach for the treatment of diaphragmatic crus syndrome: technical note Zach Pennington, BS,1 Bowen Jiang, MD,1 Erick M. Westbroek, MD,1 Ethan Cottrill, MS,1 Benjamin Greenberg, MD,2 Philippe Gailloud, MD,3 Jean-Paul Wolinsky, MD,4 Ying Wei Lum, MD,5 and Nicholas Theodore, MD1 1Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; 2Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas; 3Division of Interventional Neuroradiology, Johns Hopkins School of Medicine, Baltimore, Maryland; 4Department of Neurosurgery, Northwestern University, Chicago, Illinois; and 5Department of Vascular Surgery and Endovascular Therapy, Johns Hopkins School of Medicine, Baltimore, Maryland OBJECTIVE Myelopathy selectively involving the lower extremities can occur secondary to spondylotic changes, tumor, vascular malformations, or thoracolumbar cord ischemia. Vascular causes of myelopathy are rarely described. An un- common etiology within this category is diaphragmatic crus syndrome, in which compression of an intersegmental artery supplying the cord leads to myelopathy. The authors present the operative technique for treating this syndrome, describ- ing their experience with 3 patients treated for acute-onset lower-extremity myelopathy secondary to hypoperfusion of the anterior spinal artery. METHODS All patients had compression of a lumbar intersegmental artery supplying the cord; the compression was caused by the diaphragmatic crus. Compression of the intersegmental artery was probably producing the patients’ symp- toms by decreasing blood flow through the artery of Adamkiewicz, causing lumbosacral ischemia. RESULTS All patients underwent surgery to transect the offending diaphragmatic crus. Each patient experienced sub- stantial symptom improvement, and 2 patients made a full neurological recovery before discharge.
    [Show full text]
  • The Putative Role of Spinal Cord Ischaemia
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.5.717 on 1 May 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:717-718 Short report Neurological deterioration after laminectomy for spondylotic cervical myeloradiculopathy: the putative role of spinal cord ischaemia GEORGE R CYBULSKI,* CHARLES M D'ANGELOt From the Department ofNeurosurgery, Cook County Hospital,* and Rush-Presbyterian St Luke's Medical Center,t Chicago, Illinois, USA SUMMARY Most cases of neurological deterioration after laminectomy for cervical radi- culomyelopathy occur several weeks to months postoperatively, except when there has been direct trauma to the spinal cord or nerve roots during surgery. Four patients are described who developed episodes of neurological deterioration during the postoperative recovery period that could not be attributed to direct intraoperative trauma nor to epidural haematoma or instability of the cervical spine as a consequence of laminectomy. Following laminectomy for cervical radiculomyelopathy Protected by copyright. four patients were unchanged neurologically from their pre-operative examinations, but as they were raised into the upright position for the first time following surgery focal neurological deficits referrable to the spinal cord developed. Hypotension was present in all four cases during these episodes and three of the four patients had residual central cervical cord syndromes. These cases represent the first reported instances of spinal cord ischaemia occurring with post-operative hypo- tensive episodes after decompression for cervical spondylosis. A number of possible causes for neurological deterio- postoperative haematomas or spine dislocation. Be- ration after laminectomy for cervical spondylosis cause of the nature of the deficits and the exclusion of have been suggested.
    [Show full text]
  • Transverse Myelitis Clinical Manifestations, Pathogenesis, and Management
    11 Transverse Myelitis Clinical Manifestations, Pathogenesis, and Management Chitra Krishnan, Adam I. Kaplin, Deepa M. Deshpande, Carlos A. Pardo, and Douglas A. Kerr 1. INTRODUCTION First described in 1882, and termed acute transverse myelitis (TM) in 1948 (1), TM is a rare syndrome with an incidence of between one and eight new cases per million people per year (2). TM is characterized by focal inflammation within the spinal cord and clinical manifestations are caused by resultant neural dysfunction of motor, sensory, and autonomic pathways within and passing through the inflamed area. There is often a clearly defined rostral border of sensory dys- function and evidence of acute inflammation demonstrated by a spinal magnetic resonance imaging (MRI) and lumbar puncture. When the maximal level of deficit is reached, approx 50% of patients have lost all movements of their legs, virtually all patients have some degree of bladder dysfunction, and 80 to 94% of patients have numbness, paresthesias, or band-like dysesthesias (2–7). Autonomic symptoms consist variably of increased urinary urgency, bowel or bladder incontinence, difficulty or inability to void, incomplete evacuation or bowel, constipation, and sexual dysfunction (8). Like mul- tiple sclerosis (MS) (9), TM is the clinical manifestation of a variety of disorders with distinct presen- tations and pathologies (10). Recently, we proposed a diagnostic and classification scheme that has defined TM as either idiopathic or associated with a known inflammatory disease (i.e., MS, systemic lupus erythematosus [SLE], Sjogren’s syndrome, or neurosarcoidosis) (11). Most TM patients have monophasic disease, although up to 20% will have recurrent inflammatory episodes within the spinal cord (Johns Hopkins Transverse Myelitis Center [JHTMC] case series, unpublished data) (12,13).
    [Show full text]
  • Spinal Injury
    SPINAL INJURY Presented by:- Bhagawati Ray DEFINITION Spinal cord injury (SCI) is damage to the spinal cord that results in a loss of function such as mobility or feeling. TYPES OF SPINAL CORD INJURY Complete Spinal Cord Injuries Complete paraplegia is described as permanent loss of motor and nerve function at T1 level or below, resulting in loss of sensation and movement in the legs, bowel, bladder, and sexual region. Arms and hands retain normal function. INCOMPLETE SPINAL CORD INJURIES Anterior cord syndrome Anterior cord syndrome, due to damage to the front portion of the spinal cord or reduction in the blood supply from the anterior spinal artery, can be caused by fractures or dislocations of vertebrae or herniated disks. CENTRAL CORD SYNDROME Central cord syndrome, almost always resulting from damage to the cervical spinal cord, is characterized by weakness in the arms with relative sparing of the legs, and spared sensation in regions served by the sacral segments. POSTERIOR CORD SYNDROME Posterior cord syndrome, in which just the dorsal columns of the spinal cord are affected, is usually seen in cases of chronic myelopathy but can also occur with infarction of the posterior spinal artery. BROWN-SEQUARD SYNDROME Brown-Sequard syndrome occurs when the spinal cord is injured on one side much more than the other. It is rare for the spinal cord to be truly hemisected (severed on one side), but partial lesions due to penetrating wounds (such as gunshot or knife wounds) or fractured vertebrae or tumors are common. CAUDA EQUINASYNDROME Cauda equina syndrome (CES) is a condition that occurs when the bundle of nerves below the end of the spinal cord known as the cauda equina is damaged.
    [Show full text]
  • Clinical and Epidemiological Profiles of Non-Traumatic Myelopathies
    DOI: 10.1590/0004-282X20160001 ARTICLE Clinical and epidemiological profiles of non-traumatic myelopathies Perfil clínico e epidemiológico das mielopatias não-traumáticas Wladimir Bocca Vieira de Rezende Pinto, Paulo Victor Sgobbi de Souza, Marcus Vinícius Cristino de Albuquerque, Lívia Almeida Dutra, José Luiz Pedroso, Orlando Graziani Povoas Barsottini ABSTRACT Non-traumatic myelopathies represent a heterogeneous group of neurological conditions. Few studies report clinical and epidemiological profiles regarding the experience of referral services. Objective: To describe clinical characteristics of a non-traumatic myelopathy cohort. Method: Epidemiological, clinical, and radiological variables from 166 charts of patients assisted between 2001 and 2012 were compiled. Results: The most prevalent diagnosis was subacute combined degeneration (11.4%), followed by cervical spondylotic myelopathy (9.6%), demyelinating disease (9%), tropical spastic paraparesis (8.4%) and hereditary spastic paraparesis (8.4%). Up to 20% of the patients presented non-traumatic myelopathy of undetermined etiology, despite the broad clinical, neuroimaging and laboratorial investigations. Conclusion: Regardless an extensive evaluation, many patients with non-traumatic myelopathy of uncertain etiology. Compressive causes and nutritional deficiencies are important etiologies of non-traumatic myelopathies in our population. Keywords: spinal cord diseases, myelitis, paraparesis, myelopathy. RESUMO As mielopatias não-traumáticas representam um grupo heterogêneo de doenças
    [Show full text]
  • American College of Radiology ACR Appropriateness Criteria®
    Date of origin: 1996 Last review date: 2011 American College of Radiology ® ACR Appropriateness Criteria Clinical Condition: Myelopathy Variant 1: Traumatic. Radiologic Procedure Rating Comments RRL* CT spine without contrast 9 First test for acute management. ☢☢☢ For problem solving or operative MRI spine without contrast 8 planning. Most useful when injury is not O explained by bony fracture. May be first test in multisystem trauma, X-ray spine 7 especially when CT is delayed. To assess ☢☢☢ stability. Myelography and postmyelography CT 5 MRI preferable. spine ☢☢☢☢ Usually performed in conjunction with X-ray myelography 3 CT. ☢☢☢ For suspected vascular trauma. Use of MRA spine without and with contrast 3 contrast may vary depending on technique O used. For suspected vascular trauma. Use of MRA spine without contrast 3 contrast may vary depending on technique O used. CTA spine with contrast 3 For suspected vascular trauma. ☢☢☢ Arteriography spine 2 Varies MRI spine without and with contrast 2 O CT spine with contrast 2 ☢☢☢ Tc-99m bone scan with SPECT spine 2 ☢☢☢ In-111 WBC scan spine 2 ☢☢☢☢ MRI spine flow without contrast 2 O CT spine without and with contrast 1 ☢☢☢☢ Epidural venography 1 Varies US spine 1 O X-ray discography 1 ☢☢☢ *Relative Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate Radiation Level ACR Appropriateness Criteria® 1 Myelopathy Clinical Condition: Myelopathy Variant 2: Painful. Radiologic Procedure Rating Comments RRL* MRI spine without contrast 8 O If infection or neoplastic disorder is suspected. See statement regarding MRI spine without and with contrast 7 O contrast in text under “Anticipated Exceptions.” CT spine without contrast 7 Most useful for spondylosis.
    [Show full text]
  • Sic Tapa 174 Sb 41610.Pmd
    Año XVI, Vol.17, Nº 4 - Marzo, 2010 ISSN 1667-8982 es una publicación de la Sociedad Iberoamericana de Información Científica (SIIC) La artritis de la poliarteritis nodosa cutánea en niños Año XVI, Vol.17, Nº 4 - Marzo, 2010 Vol.17, XVI, Año se relaciona con la infección por estreptococos Salud(i)Ciencia Carlos Alonso, «Jugete rabioso», acrílico, 140 x 100 cm, 1967. Carlos «La artritis es un signo frecuente en la poliarteritis nodosa; sus características clínicas (poliartritis aguda que afecta grandes articulaciones, fiebre, nódulos subcutáneos) y su relación con el estreptococo pueden inducir a una confusión diagnóstica con la fiebre reumática.» Ricardo A. G. Russo, Columnista Experto (especial para SIIC), Buenos Aires, Argentina. Pág. 342 Editorial La producción científica argentina debe editarse en medios locales especializados Rafael Bernal Castro, Buenos Aires, Argentina. Pág. 314 Expertos invitados Revisiones La artritis de la poliarteritis nodosa cutánea en niños se Aumento de la exhalación de peróxido de hidrógeno y de la relaciona con la infección por estreptococos interleuquina 18 circulante en la tuberculosis pulmonar Ricardo A. G. Russo, Buenos Aires, Argentina. Pág. 342 Silwia Kwiatkowska, Lodz, Polonia. Pág. 317 La resección transuretral de próstata bajo anestesia local La desregulación del complemento influye en el pronóstico y sedación es segura y bien tolerada de los niños trasplantados por síndrome urémico hemolítico Pedro Navalón Verdejo, Valencia, España. Pág. 347 Alejandra Rosales, Innsbruck, Austria. Pág. 320 Destacan la utilidad del mapeo de superficie corporal Lugar de los antipsicóticos de segunda generación en la pesquisa de la enfermedad coronaria en el tratamiento del trastorno bipolar Frantisek Boudik, Praga, República Checa.
    [Show full text]
  • Where Does Central Cord Syndrome Fit Into the Spinal Cord Injury Spectrum?
    Central cord syndrome Laura Snyder, MD FAANS Director of Neurotrauma Minimally Invasive Spine Surgeon Barrow Neurological InsAtute St. Joseph’s Hospital and Medical Center Where does central cord syndrome fit into the spinal cord injury spectrum? Spinal Cord Injury • Complete • No preservaAon of any motor and/or sensory funcAon more than 3 segments below the level of injury in the absence of spinal shock • Incomplete • Some preservaAon of motor and/or sensory funcAon below level of injury including • Palpable or visible muscle contracAon • Perianal sensaAon • Voluntary anal contracAon Incomplete Spinal Cord Injury • Central cord syndrome • Anterior cord syndrome • Brown-Sequard syndrome • Posterior Cord Syndrome Spinal Cord Injury Epidemiology • 11,000 cases/year • 34% incomplete tetraplegia • Most common is Central Cord Syndrome • 11% incomplete paraplegia • 47% complete injuries The Cause • Most commonly acute hyperextension injury in older paAent with pre-exisAng acquired stenosis • Stenosis can be result of • Bony hypertrophy (anterior or posterior spurs) • Infolding of redundant ligamentum flavum posteriorly • Anterior disc bulge or herniaAon • Congenital spinal stenosis Abnormal Loading of Spinal Cord can cause Spinal Cord Injury Nerve Compression at Rest Combine pre-exisAng compression with hyperextension => Central Cord Syndrome Most Common PresentaAon • Blow to upper face or forehead • Forward fall (anyAme you see an elderly paAent with a fall in which they hit their head) • Motor Vehicle accident • SporAng injuries Pathomechanics
    [Show full text]
  • Spinal Cord Injury and Compression
    Page 1 of 10 View this article online at: patient.info/doctor/spinal-cord-injury-and-compression Spinal Cord Injury and Compression See also the separate article on Whiplash and Cervical Spine Injury. Acute spinal cord compression is a neurosurgical emergency. Rapid diagnosis and management are essential to have the highest chances of preventing permanent loss of function. The spinal cord extends from the base of the skull and terminates near the lower margin of the L1 vertebral body. Below L1, the spinal canal contains the lumbar, sacral and coccygeal spinal nerves that comprise the cauda equina. Therefore, injuries below L1 involve the segmental spinal nerves and/or cauda equina. Injuries above the termination of the spinal cord at L1 often involve both spinal cord lesions and segmental root or spinal nerve injuries. The incidence of traumatic spinal cord injury in Western Europe is about 16 per million.[1] Spinal cord injury in children is relatively rare.[2] A traumatic spinal cord injury is a lesion of neural elements of the spinal cord that can result in any degree of sensory and motor deficit, and autonomic or bowel dysfunction.[3] Spinal cord injuries may be primary or secondary: Primary injuries arise from a variety of mechanisms, including mechanical disruption, transection, penetrating injuries due to bullets or weapons, vertebral fracture/subluxation or displaced bony fragments causing penetrating spinal cord and/or segmental spinal nerve injuries. The primary traumatic impact initiates vascular and chemical processes leading to oedema and ischaemia which can lead to secondary injuries. Further cord insult can occur through subsequent inappropriate manual handling following trauma.
    [Show full text]
  • Spinal Cord Injury Cord Spinal on Perspectives International
    INTERNATIONAL PERSPECTIVES ON SPINAL CORD INJURY “Spinal cord injury need not be a death sentence. But this requires e ective emergency response and proper rehabilitation services, which are currently not available to the majority of people in the world. Once we have ensured survival, then the next step is to promote the human rights of people with spinal cord injury, alongside other persons with disabilities. All this is as much about awareness as it is about resources. I welcome this important report, because it will contribute to improved understanding and therefore better practice.” SHUAIB CHALKEN, UN SPECIAL RAPPORTEUR ON DISABILITY “Spina bi da is no obstacle to a full and useful life. I’ve been a Paralympic champion, a wife, a mother, a broadcaster and a member of the upper house of the British Parliament. It’s taken grit and dedication, but I’m certainly not superhuman. All of this was only made possible because I could rely on good healthcare, inclusive education, appropriate wheelchairs, an accessible environment, and proper welfare bene ts. I hope that policy-makers everywhere will read this report, understand how to tackle the challenge of spinal cord injury, and take the necessary actions.” TANNI GREYTHOMPSON, PARALYMPIC MEDALLIST AND MEMBER OF UK HOUSE OF LORDS “Disability is not incapability, it is part of the marvelous diversity we are surrounded by. We need to understand that persons with disability do not want charity, but opportunities. Charity involves the presence of an inferior and a superior who, ‘generously’, gives what he does not need, while solidarity is given between equals, in a horizontal way among human beings who are di erent, but equal in their rights.
    [Show full text]
  • Types of Non-Traumatic Spinal Cord Injury
    Non trauma spinal cord injury Slater and Gordon Lawyers are one of the country's leading claimant personal injury law firms, recovering millions of pounds worth of compensation for accident victims every year. We are experts in securing the maximum amount of spinal cord injury compensation and getting rehabilitation support as quickly as possible. Slater and Gordon Lawyers understand the sudden change in lifestyle caused by an injury to the spinal cord and the immediate strain this places on finances. That is why with Slater and Gordon Lawyers on your side, a No Win, No Fee (Conditional Fee) agreement can enable you to get the support and financial compensation you need to live with a spinal cord injury, not only in the short term, but also to provide for your future needs. Every spinal cord injury claim is different and the amount of compensation paid will vary from case to case. We will however give you an accurate indication at the earliest stage as to how much compensation you could expect to receive, to help you plan for your future. Slater and Gordon Lawyers have a specialist team dedicated to pursuing compensation claims on behalf of those who sustain spinal cord injury in all types of accident, be it a road traffic collision, an accident in the workplace or whilst on holiday or travelling in a foreign country. Our expert solicitors provide total support for our clients, particularly at times when they may feel at their most vulnerable. We approach each case with understanding and sensitivity. Where possible, we will seek to secure an interim payment of compensation to relieve financial pressures and cover immediate expenses.
    [Show full text]
  • 81) Designated States (Unless Otherwise Indicated, for Every PCT/EP2020/062343 Kind of National Protection Av Ailable
    ) ( (51) International Patent Classification: (74) Agent: ZWICKER, Jork; Zwicker Schnappauf & Part¬ A61K 39/00 (2006.01) C07K 1 7/00 (2006.01) ner Patentanwalte PartG mbB, Hansastr. 32, 80686 Munich C07K 7/00 (2006.01) A61P25/28 (2006.01) (DE). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/EP2020/062343 kind of national protection av ailable) . AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 04 May 2020 (04.05.2020) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (25) Filing Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 19172392.3 02 May 2019 (02.05.2019) EP SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. (71) Applicant: DEUTSCHES ZENTRUM F R NEU- RODEGENERATIVE ERKRANKUNGEN E.V. (84) Designated States (unless otherwise indicated, for every (DZNE) [DE/DE]; Venusberg-Campus 1, Gebaude 99, kind of regional protection available) . ARIPO (BW, GH, 53 127 Bonn (DE). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: EDBAUER, Dieter; Blumenstralk 30, 821 10 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Germering (DE).
    [Show full text]