Neurexin 1 Variants As Risk Factors for Suicide Death
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown. -
Genetic Profiling of a Cone-Dominated Retina and Cone Photoreceptor Subtypes
Genetic profiling of a cone-dominated retina and cone photoreceptor subtypes Vincent P. Kunze Date of birth June 8, 1986 Place of birth Kempten (Allgäu) Accepted thesis Doctor rerum naturalium (Dr. rer. nat.) Institute for Biology and Environmental Sciences Carl von Ossietzky Universität Oldenburg First examiner: Prof. Dr. Karl-Wilhelm Koch Second examiner: apl. Prof. Dr. Karin Dedek Date of thesis defense: December 18, 2017 2 Abstract Abstract Mammals have two major types of sensory neurons in the retina: rods, specialized for vision in dim-light, and cones for vision in well-lit conditions and the perception of color. In my thesis, I characterized features of cone photoreceptor subtypes and the cone-dominated retinae of the tree shrew and the thirteen-lined ground squirrel. In tree shrew, I described morphological and transcriptomic changes during development. Compared to mice, the general morphology of the developing retina was similar. There were subtle differences in the onset of transcription factors and in the relative timepoints of photoreceptor genesis. The transcriptomic analysis revealed and onset Wif1-expression after birth, a gene that could potentially suppress rod development in the tree shrew. Furthermore, I looked at molecular differences in cone photoreceptor subtypes. Most mammals have two cone types, namely S- and M-cones. They diverge in their sensitivity to different wavelengths of light, based on their expression of different light-sensitive proteins: S-opsin for blue light and M-opsin for green light. Until now, cones have been classified mostly by the opsin they express. The purpose of this project was to identify genetic differences in cones and, more specifically, to find genes that are involved in cone synapse formation. -
PSD-95 Binding Dynamically Regulates NLGN1 Trafficking and Function
PSD-95 binding dynamically regulates NLGN1 trafficking and function Jaehoon Jeonga, Saurabh Pandeya, Yan Lia, John D. Badger IIa, Wei Lua, and Katherine W. Rochea,1 aNational Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved May 3, 2019 (received for review December 20, 2018) PSD-95 is a scaffolding protein that regulates the synaptic localization necessary for maintaining presynaptic release probability (15). of many receptors, channels, and signaling proteins. The NLGN gene Meanwhile, synaptic targeting of NLGN1 is known to be in- family encodes single-pass transmembrane postsynaptic cell adhesion dependent of PSD-95, as PSD-95 is recruited to the plasma molecules that are important for synapse assembly and function. At membrane after NLGN1 (13, 16, 17). In addition, non-PDZ excitatory synapses, NLGN1 mediates transsynaptic binding with ligand-dependent NLGN1 and NLGN3 functions have been in- neurexin, a presynaptic cell adhesion molecule, and also binds to vestigated (18), suggesting a complicated physiological interplay PSD-95, although the relevance of the PSD-95 interaction is not clear. between NLGNs and PSD-95. We now show that disruption of the NLGN1 and PSD-95 interaction Posttranslational modifications have been reported for several decreases surface expression of NLGN1 in cultured neurons. Further- NLGN isoforms and are postulated to confer distinct properties (11, more, PKA phosphorylates NLGN1 on S839, near the PDZ ligand, and 12). For example, phosphorylation of the cytoplasmic region of dynamically regulates PSD-95 binding. A phosphomimetic mutation NLGN1 has recently emerged as a mechanism for isoform-specific of NLGN1 S839 significantly reduced PSD-95 binding. -
Autism-Associated Mir-873 Regulates ARID1B, SHANK3 and NRXN2
Lu et al. Translational Psychiatry (2020) 10:418 https://doi.org/10.1038/s41398-020-01106-8 Translational Psychiatry ARTICLE Open Access Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment Jing Lu 1, Yan Zhu 1, Sarah Williams2, Michelle Watts 3,MaryA.Tonta1, Harold A. Coleman1, Helena C. Parkington1 and Charles Claudianos 1,4 Abstract Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders with significant genetic heterogeneity. Noncoding microRNAs (miRNAs) are recognised as playing key roles in development of ASD albeit the function of these regulatory genes remains unclear. We previously conducted whole-exome sequencing of Australian families with ASD and identified four novel single nucleotide variations in mature miRNA sequences. A pull-down transcriptome analysis using transfected SH-SY5Y cells proposed a mechanistic model to examine changes in binding affinity associated with a unique mutation found in the conserved ‘seed’ region of miR-873-5p (rs777143952: T > A). Results suggested several ASD-risk genes were differentially targeted by wild-type and mutant miR-873 variants. In the current study, a dual-luciferase reporter assay confirmed miR-873 variants have a 20-30% inhibition/dysregulation effect on candidate autism risk genes ARID1B, SHANK3 and NRXN2 and also confirmed the affected expression with qPCR. In vitro mouse hippocampal neurons transfected with mutant miR-873 showed less morphological complexity and enhanced sodium currents and excitatory neurotransmission compared to cells transfected with wild-type miR- 873. A second in vitro study showed CRISPR/Cas9 miR-873 disrupted SH-SY5Y neuroblastoma cells acquired a neuronal-like morphology and increased expression of ASD important genes ARID1B, SHANK3, ADNP2, ANK2 and CHD8. -
Downregulation of Glial Genes Involved in Synaptic Function
RESEARCH ARTICLE Downregulation of glial genes involved in synaptic function mitigates Huntington’s disease pathogenesis Tarik Seref Onur1,2,3†, Andrew Laitman2,4,5†, He Zhao2, Ryan Keyho2, Hyemin Kim2, Jennifer Wang2, Megan Mair1,2,3, Huilan Wang6, Lifang Li1,2, Alma Perez2, Maria de Haro1,2, Ying-Wooi Wan2, Genevera Allen2,7, Boxun Lu6, Ismael Al-Ramahi1,2, Zhandong Liu2,4,5, Juan Botas1,2,3,4* 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States; 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, United States; 3Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, United States; 4Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, United States; 5Department of Pediatrics, Baylor College of Medicine, Houston, United States; 6State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; 7Departments of Electrical & Computer Engineering, Statistics and Computer Science, Rice University, Houston, United States Abstract Most research on neurodegenerative diseases has focused on neurons, yet glia help form and maintain the synapses whose loss is so prominent in these conditions. To investigate the contributions of glia to Huntington’s disease (HD), we profiled the gene expression alterations of *For correspondence: Drosophila expressing human mutant Huntingtin (mHTT) in either glia or neurons and compared [email protected] these changes to what is observed in HD human and HD mice striata. A large portion of conserved genes are concordantly dysregulated across the three species; we tested these genes in a high- †These authors contributed throughput behavioral assay and found that downregulation of genes involved in synapse assembly equally to this work mitigated pathogenesis and behavioral deficits. -
Alzheimer's Disease Neuroimaging Initiative Biomarkers As Quantitative
Alzheimer’s & Dementia 6 (2010) 265–273 Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans Andrew J. Saykina,b,*, Li Shena,c, Tatiana M. Foroudb, Steven G. Potkind, Shanker Swaminathana,b, Sungeun Kima,c, Shannon L. Risachera, Kwangsik Nhoa,e, Matthew J. Huentelmanf, David W. Craigf, Paul M. Thompsong, Jason L. Steing, Jason H. Mooreh,i, Lindsay A. Farrerj, Robert C. Greenj, Lars Bertramk, Clifford R. Jack, Jr.l, Michael W. Weinerm,n,o,p; and the Alzheimer’s Disease Neuroimaging Initiative aDepartment of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA bDepartment of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA cCenter for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA dDepartment of Psychiatry and Human Behavior, University of California, Irvine, CA, USA eDivision of Medical Informatics, Regenstrief Institute, Indianapolis, IN, USA fNeurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA gLaboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA hDepartment of Genetics, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH, USA iDepartment of Community and Family Medicine, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH, USA jDepartments of Medicine (Genetics Program), Neurology, Epidemiology, Genetics, -
Neuroblastoma Cancer Stem Cells: the Role of NXPH1 and Its Receptor Α-NRXN1
Neuroblastoma cancer stem cells: The role of NXPH1 and its receptor α-NRXN1 Lucía Fanlo Escudero Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 4.0. Spain License. UNIVERSITAT DE BARCELONA FACULTAD DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ Neuroblastoma cancer stem cells: The role of NXPH1 and its receptor α-NRXN1 Lucía Fanlo Escudero 2019 UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ PROGRAMA DE DOCTORAT EN BIOMEDICINA Neuroblastoma cancer stem cells: The role of NXPH1 and its receptor α-NRXN1 Memoria presentada por Lucía Fanlo Escudero para optar al título de Doctora por la Universitat de Barcelona Este trabajo ha sido realizado bajo la dirección de la Dra. Elisa Martí Gorostiza y del Dr. Gwenvael Le Dréau, en el Instituto de Biología Molecular de Barcelona (IBMB-CSIC) Codirectores: Dra. Elisa Martí Gorostiza Dr. Gwenvael Le Dréau Doctoranda: Tutor: Lucía Fanlo Escudero Dr. Carles Enrich Bastús 2019 […] CLARA.- (Piensa:) ¿Cómo es posible que alguien quiera dormir cuando hay tanta hermosura en el aire, en las rocas, en los árboles? Yo no quiero dormir nunca, nunca; no quiero perder ni un segundo de vida, por que ahora que he visto la maravilla de esta noche, me figuro que siempre deben estar su- cediendo cosas maravillosas. Y si sucede una que no pueda ocurrir más que una vez y yo, por estarme durmiendo, no la veo, no me consolaré en mi vida entera. -
Scientists Home in on Autism Candidate Gene's Role in Brain
Spectrum | Autism Research News https://www.spectrumnews.org NEWS Scientists home in on autism candidate gene’s role in brain BY EMILY SINGER 26 NOVEMBER 2012 Friendly neighborhood: Cells lacking neuroligin-1 have a normal number of synapses (top), but lose them when their neighboring cells express the protein (bottom). Friendly neighborhood: Cells lacking neuroligin-1 have a normal number of synapses (top), but lose them when their neighboring cells express the protein (bottom). Four new studies of neuroligin-1 (NLGN1), a gene linked to autism, unravel its complex role in regulating synapses, the connections between neurons. Three of the studies, published 18 October in Neuron1,2,3, find that the NLGN1 protein is involved in both strengthening and weakening synapses. A fourth, published 8 November in Nature Neuroscience, shows that its role is highly dependent on the environment4. NLGN1 is a member of a family of four proteins known to be involved in synapse maturation5 and maintenance. The proteins were first linked to autism in 2003, when researchers discovered mutations in NLGN4 in two brothers with autism. A mutation in NLGN1 and a duplication of the gene have been found in two individuals with autism6. 1 / 4 Spectrum | Autism Research News https://www.spectrumnews.org Better understanding of the function of these proteins may help researchers understand how mutations in them contribute to autism risk. “A lot of people are interested in NLGN1, because it’s part of a gene family that comes up again and again in autism, but we really don’t understand what it does,” says Bernardo Sabatini, professor of molecular biology at Harvard Medical School and lead investigator of the Nature Neuroscience paper. -
Mycobacterium Tuberculosis-Induced Maternal Immune Activation Promotes Autism-Like Phenotype in Infected Mice Offspring
International Journal of Environmental Research and Public Health Article Mycobacterium tuberculosis-Induced Maternal Immune Activation Promotes Autism-Like Phenotype in Infected Mice Offspring Wadzanai Manjeese 1 , Nontobeko E. Mvubu 2 , Adrie J. C. Steyn 2,3,4 and Thabisile Mpofana 1,* 1 Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa; [email protected] 2 Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu Natal, Durban 4001, South Africa; [email protected] (N.E.M.); [email protected] (A.J.C.S.) 3 Africa Health Research Institute, K-Rith Tower Building, Nelson Mandela School of Medicine, Durban 4001, South Africa 4 Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA * Correspondence: [email protected] Abstract: The maternal system’s exposure to pathogens during pregnancy influences fetal brain development causing a persistent inflammation characterized by elevated pro-inflammatory cytokine levels in offspring. Mycobacterium tuberculosis (Mtb) is a global pathogen that causes tuberculosis, a pandemic responsible for health and economic burdens. Although it is known that maternal Citation: Manjeese, W.; Mvubu, N.E.; infections increase the risk of autism spectrum disorder (ASD), it is not known whether Mtb infection Steyn, A.J.C.; Mpofana, T. is sufficient to induce ASD associated behaviors, immune dysregulation and altered expression Mycobacterium tuberculosis-Induced of synaptic regulatory genes. The current study infected pregnant Balb/c mice with Mtb H37Rv Maternal Immune Activation and valproic acid (VPA) individually and in combination. Plasma cytokine profiles were measured Promotes Autism-Like Phenotype in Infected Mice Offspring. -
Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology. -
Sex-Linked Neuroligins and Their Roles at Synapses A
SEX-LINKED NEUROLIGINS AND THEIR ROLES AT SYNAPSES A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Pharmacology By Thien Anh Nguyen, B.S. Washington, D.C. March 3, 2020 Copyright 2020 by Thien A. Nguyen All Rights Reserved ii SEX-LINKED NEUROLIGINS AND THEIR ROLES AT SYNAPSES Thien A Nguyen, B.S. Thesis Advisor: Katherine W. Roche, PhD ABSTRACT Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social- communication impairments, restricted and repetitive behaviors, and is more prevalent in males. Although the underlying etiology of ASD is generally unknown, a cell adhesion molecule, Neuroligin 4X (NLGN4X) located on the X chromosome, has been specifically linked with this disorder. The male-specific NLGN4Y, the NLGN4X homolog, is thought to be functionally redundant, but this assumption has not been experimentally tested. In this dissertation, we report NLGN4X and NLGN4Y are functionally different. NLGN4Y does not effectively traffic to the surface or induce synapses. We show that a critical amino acid difference in the extracellular domain (ECD) between NLGN4X (P93) and NLGN4Y (S93) leads to this differential function. In addition, we show that NLGN4X is robustly phosphorylated by protein kinase A and protein kinase C, whereas NLGN4Y cannot. The differential phosphorylation is due to one amino acid difference in the intracellular domain (ICD) between NLGN4X (R710) and NLGN4Y (H710). Together, we demonstrate that NLGN4X and NLGN4Y do not share the same function. Interestingly, many ASD-associated variants have been identified in NLGN4X in the region surrounding P93, and there is a decrease in normal population variation in this region. -
Cisplatin Treatment of Testicular Cancer Patients Introduces Long-Term Changes in the Epigenome Cecilie Bucher-Johannessen1, Christian M
Bucher-Johannessen et al. Clinical Epigenetics (2019) 11:179 https://doi.org/10.1186/s13148-019-0764-4 RESEARCH Open Access Cisplatin treatment of testicular cancer patients introduces long-term changes in the epigenome Cecilie Bucher-Johannessen1, Christian M. Page2,3, Trine B. Haugen4 , Marcin W. Wojewodzic1, Sophie D. Fosså1,5,6, Tom Grotmol1, Hege S. Haugnes7,8† and Trine B. Rounge1,9*† Abstract Background: Cisplatin-based chemotherapy (CBCT) is part of standard treatment of several cancers. In testicular cancer (TC) survivors, an increased risk of developing metabolic syndrome (MetS) is observed. In this epigenome- wide association study, we investigated if CBCT relates to epigenetic changes (DNA methylation) and if epigenetic changes render individuals susceptible for developing MetS later in life. We analyzed methylation profiles, using the MethylationEPIC BeadChip, in samples collected ~ 16 years after treatment from 279 Norwegian TC survivors with known MetS status. Among the CBCT treated (n = 176) and non-treated (n = 103), 61 and 34 developed MetS, respectively. We used two linear regression models to identify if (i) CBCT results in epigenetic changes and (ii) epigenetic changes play a role in development of MetS. Then we investigated if these changes in (i) and (ii) links to genes, functional networks, and pathways related to MetS symptoms. Results: We identified 35 sites that were differentially methylated when comparing CBCT treated and untreated TC survivors. The PTK6–RAS–MAPk pathway was significantly enriched with these sites and infers a gene network of 13 genes with CACNA1D (involved in insulin release) as a network hub. We found nominal MetS-associations and a functional gene network with ABCG1 and NCF2 as network hubs.