Wards the Development of a Cu- Pola Furnace Process Model a Case Study on the Cupola Furnace Operations of Volvo Group Trucks Operations in Skövde, Sweden

Total Page:16

File Type:pdf, Size:1020Kb

Wards the Development of a Cu- Pola Furnace Process Model a Case Study on the Cupola Furnace Operations of Volvo Group Trucks Operations in Skövde, Sweden Extensive investigations to- wards the development of a cu- pola furnace process model A case study on the cupola furnace operations of Volvo Group Trucks Operations in Skövde, Sweden Zahra Hassan June 2012 Master thesis School of Industrial Engineering and Management Department of Material Science and Engineering Royal Institute of Technology SE-100 44 Stockholm 1 Master of Science Thesis MMK 2012:x MKN yyy Extensive investigations towards the development of a cupola furnace process model Zahra Hassan Approved Examiner Supervisor 2012-06-18 Pär Jönsson Rutger Gyllenram Patrik Ternstedt Commissioner Contact person Kobolde and Partners AB Joel Gustavsson Abstract The objective of this master thesis is to evaluate the cupola furnace operations of Volvo Group Trucks Operations in Skövde, Sweden. This evaluation is done by developing two accurate mass and heat balance process models for the cupola. The data used for the development of the mass and heat balances were provided by Volvo AB. The first process model assumes that the oxygen present in the off-gas analysis is from top air leakage. The second process model assumes that the oxygen present in the off-gas analysis is from the oxygen injected through the tuyeres as blast air. In both process models, it has been calculated that the silicon and manganese losses of Volvo AB’s cupola are 32 and 20 percent of the elements in the charge respectively. This thesis also includes exploring the possibility of increasing sulfur pickup of the cupola hot metal by controlling the flux and slag. For the purpose of this investigation, a case study is set up to examine the effect that decreasing limestone additions has on the properties of the slag. It is found that a decrease of the amount of limestone added in the charged materials will result in a significant decrease in the 2 sulfide capacity of the slag as well as the distribution of sulfur between the slag and the hot metal. However, the viscosity of the slag also increases noticeably. Other interesting methods of increasing the sulfur pickup of the hot metal without decreasing the viscosity of the slag are also suggested in this thesis. The final part of this work is a further development of Rawmatmix® software. The objective of this part of the thesis is to compare enthalpies of different cupola slag compositions using Rawmatmix® and Thermocalc® in order to improve slag enthalpies and specific heat (Cp) values of Rawmatmix® software. The difference between the Thermocalc® and Rawmatmix® enthalpy data is expressed as a difference in temperature. The standard deviation of the error between Rawmatmix® enthalpy model and Thermocalc® decreased from 64K to 32K. Finally, slag-metal equilibrium calculation is also carried out for Volvo AB’s cupola furnace using Thermocalc®. 3 This thesis is dedicated to my loving parents for teaching me the importance of education 4 Acknowledgements Writing this master thesis would not have been possible without the support of several people. First and foremost, I am particularly grateful to Patrik Ternstedt at Kobolde and Partners, for his pa- tience, motivation, enthusiasm, and immense help. His guidance helped me throughout my master the- sis. I could not have imagined having a better advisor and mentor for my master thesis. It is also with immense gratitude that I acknowledge the support and help of my supervisors Dr Rutger Gyllenram and Dr Joel Gustavsson at Kobolde and Partners AB whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. Moreover, I owe my deepest gratitude to Mari Larsson at Volvo Group Trucks Operations for her kind assistance in providing me with all the data from the foundry in Skövde. Furthermore, I would like to thank Olle Westerberg for the opportunity to write this thesis at Kobolde and Partners AB. I would also like to express my sincere gratitude to Christer Davidsson at Volvo Group Trucks Operations for the opportunity to work on Volvo AB’s cupola process at the foundry in Skövde, Sweden. Many thanks to Dr Lidong Teng and Professor Du Sichen from The Royal Institute of Technology for helping me obtain and analyze data from ThermoSlag® software. I am also grateful to the rest of the staff at Kobolde for their warm hospitality. Finally, I would also like to thank my family for their love and support. I am especially grateful to my husband, Ahmed, for his continuous support and encouragement. 5 Table of Contents Chapter 1 – Introduction and Overview .................................................................................................... 8 1.1 Background ..................................................................................................................................... 8 1.2 Problem description ........................................................................................................................ 8 1.3 Method and Disposition .................................................................................................................. 9 Chapter 2- LITERATURE SURVEY: Foundry Cast Iron and cupola furnace ........................................ 11 2.1 Introduction .................................................................................................................................... 11 2.2 Cast Irons ....................................................................................................................................... 11 2.2.1 Principles of the metallurgy of cast irons ............................................................................... 13 2.2.2 Types of cast irons .................................................................................................................. 17 2.3 Conventional cupola furnace operation ........................................................................................ 20 2.3.1 Construction ........................................................................................................................... 21 2.3.2 Reaction zones ....................................................................................................................... 22 2.3.3 Acidic and basic cupolas ........................................................................................................ 25 2.4 Factors affecting cupola performance ........................................................................................... 26 2.4.1 Optimum blast rate ................................................................................................................. 26 2.4.2 Optimum charge mixture selection ........................................................................................ 27 2.4.3 Trade off between coke efficiency and oxidation losses ........................................................ 28 2.5 Cupola fluxes and slags................................................................................................................. 29 2.5.1 Usual fluxes............................................................................................................................ 30 2.5.2 Sources of slag ....................................................................................................................... 30 2.5.3 Acid slag composition ............................................................................................................ 31 Chapter 3- Modeling of cupola furnace: Mass and heat balance of Volvo AB’s cupola furnace in Skövde ..................................................................................................................................................... 33 3.1 Introduction ................................................................................................................................... 33 3.2 Mass balance ................................................................................................................................. 34 3.1.2 Mass balance calculations ...................................................................................................... 35 3.2 Standard deviation of the output hot metal ................................................................................... 39 3.3 Heat balance calculations .............................................................................................................. 40 3.4 Disscussion and conclusion .......................................................................................................... 42 Chapter 4 – Sulfur pickup of cupola hot metal: Slag viscosity and sulfide capacity analysis using optical basicity model and Thermoslag® software .................................................................................. 45 4.1 Introduction ................................................................................................................................... 45 4.2 Thermoslag® model ...................................................................................................................... 46 4.3 Optical basicity model .................................................................................................................. 47 6 4.4 Case study ..................................................................................................................................... 48 4.5 Discussion and conclusion ............................................................................................................ 51 Chapter 5- Slag enthalpies of Thermocalc® and Rawmatmix®:
Recommended publications
  • ITP Metal Casting: Advanced Melting Technologies
    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry November 2005 BCS, Incorporated 5550 Sterrett Place, Suite 306 Columbia, MD 21044 www.bcs-hq.com Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry Prepared for ITP Metal Casting by BCS, Incorporated November 2005 Acknowledgments This study was a collaborative effort by a team of researchers from University of Missouri–Rolla, Case Western Reserve University, and Carnegie Mellon University with BCS, Incorporated as the project coordinator and lead. The research findings for the nonferrous casting industry were contributed by Dr. Jack Wallace and Dr. David Schwam, while the ferrous melting technologies were addressed by Dr. Kent Peaslee and Dr. Richard Fruehan. BCS, Incorporated researched independently to provide an overview of the melting process and the U.S. metal casting industry. The final report was prepared by Robert D. Naranjo, Ji-Yea Kwon, Rajita Majumdar, and William T. Choate of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy and Cast Metal Coalition (CMC) in conducting this study. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof.
    [Show full text]
  • National Register of Historic Places Multiple Property
    NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple
    [Show full text]
  • Arch. Metall. Mater. 63 (2018), 2, 547-553 1. Introduction As An
    Arch. Metall. Mater. 63 (2018), 2, 547-553 DOI: 10.24425/118973 LI LEI*,**, ZHANG LIBO*,***,****, DAI LINQING*,***,****#, ZHU HONGBO*,***,****, CHEN GUO*,***,****, PENG JINHUI*,***,****, GUO QIN*,***,**** EFFECTS OF MICROWAVE SINTERING ON PROPERTIES AND MICROSTRUCTURE OF FERROMANGANESE ALLOY POWDERS Microwave sintering process was employed to agglomerate ferromanganese alloy powders. The effects of sintering tempera- ture, holding time and particle size composition on the properties and microstructure of sintering products were investigated. The results was shown that increasing sintering temperature or holding time appropriately is beneficial to increase the compressive strength and volume density. SEM and EDAX analysis shows that the liquid phase formed below the melting point in the sintering process, which leads to densification. XRD patterns indicate that the main reaction during microwave sintering is the decarboniza- tion and carburization of iron carbide phase. The experiment demonstrate that the optimum microwave sintering process condition is 1150°C, 10 min and 50% content of the powders with the size of –75 μm. Keywords: Microwave sintering; Ferromanganese powder; Densification; Liquid phase; Process conditions 1. Introduction in 1999 by Roy et al. [9], the use of microwaves to consolidate a range of particulate metals and alloys has gained growing at- As an important alloy, ferromanganese is widely used as tentions during the past decade. A lot of researches have been deoxidizer and desulfurizer for steelmaking. In addition, it is an performed in microwave sintering ceramics, ferrites and hard essential alloying agent to improve the mechanical properties of metals [10-12]. Comparing with conventional sintering, micro- steel such as hardness, ductility, toughness and anti-wear ability wave sintering have many advantages such as faster heating rate, [1-3].
    [Show full text]
  • Thermal Analysis of a Conventional Cupola Furnace with Effects of Excess Air on the Flue Gases Specific Heat !
    Journal(of(Materials(and(( J. Mater. Environ. Sci., 2021, Volume 12, Issue 02, Page 192-204 Environmental(Science( ISSN(:(2028;2508( CODEN(:(JMESCN( http://www.jmaterenvironsci.com! Copyright(©(2021,( University(of(Mohammed(Premier(((((( Oujda(Morocco( Thermal Analysis of a Conventional Cupola Furnace with Effects of Excess Air on the Flue Gases Specific Heat ! Stephen A. Ajah1,2, Donald Idorenyin 1, Uchenna C. Nwokenkwo2, Uzoma S. Nwigwe2, Benjamin O. Ezurike2 1Applied Renewable & Sustainable Energy Research Group, Department of Mechanical Engineering, University of Nigeria, Nsukka, Nigeria 2Department of Mechanical Engineering, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria *Corresponding author, Email address: [email protected] **Corresponding author, Email address: [email protected] Received 29 Dec 2020, Abstract Revised 16 Feb 2021, A thermal analysis was carried out on a 6.5 m tall and 0.65 m diameter conventional cupola Accepted 17 Feb 2021 furnace at the Nigeria Railway Corporation, Enugu. This study tries to solve metallurgical problem of the furnace wall due to gases dissociation from unbalance excess air and Keywords undefined adiabatic flame temperature used during the operation. A combustion and ! Cupola furnace, thermal analysis of the fuel (coke) used for its operation has been carried out and the ! Thermal analysis, adiabatic combustion temperature of the fuel has been determined to be 2,175.93K. The ! Combustion, stoichiometric and actual air-fuel ratio of the furnace were found to be 10.97 and 12.08 ! Excess air, respectively. The percentage of flue gases difference for wet and dry case were also ! Adiabatic temperature. investigated against the percentage excess air.
    [Show full text]
  • Economic Impact Analysis (EIA) for the Manganese Ferroalloys RTR
    Economic Impact Analysis (EIA) for the Manganese Ferroalloys RTR Final Report EPA-452/R-15-004 May 2015 Economic Impact Analysis (EIA) for the Manganese Ferroalloys RTR By: Larry Sorrels U.S. Environmental Protection Agency Office of Air Quality Planning and Standards (OAQPS) Health and Environmental Impacts Division (HEID) Air Economics Group (AEG) Research Triangle Park, NC 27711 U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Health and Environmental Impacts Division Research Triangle Park, North Carolina CONTENTS Section Page Section 1 Executive Summary ............................................................................................... 1-1 1.1 Analysis Summary ............................................................................................... 1-1 1.2 Organization of this Report.................................................................................. 1-2 Section 2 Introduction ............................................................................................................ 2-3 2.1 Background for Rule ............................................................................................ 2-3 2.1.1 What is this source category and how did the MACT regulate its HAP emissions? ....................................................................................... 2-3 2.1.2 What data collection activities were conducted to support this action?...........................................................................................2-6 2.1.3 Technology Review
    [Show full text]
  • IRON MINING – ARDIS FURNACE and GALENA FURNACE [Compiled and Transcribed by William J
    MENOMINEE RANGE HISTORY – IRON MINING – ARDIS FURNACE AND GALENA FURNACE [Compiled and Transcribed by William J. Cummings] Iron Mountain Press, Iron Mountain, Number 33 [Thursday, January 2, 1908], Dickinson County, Michigan, Volume 12, page 1, column 4 Number 31 [Thursday, December 19, 1907], page 1, column 1 Work Commenced. 100 TON FURNACE Work has commenced on the new blast _____ furnace, mention of which was made in The Press two weeks ago. It will be erected on the old waterworks property, near Lake PLANS PREPARING FOR Antoine, and the stone pump-house will be ERECTION IN IRON utilized in the construction. The contract for MOUNTAIN CITY. the steel stack and other machinery has _____ been let to the Prescott Iron Works, of Menominee. The furnace will be of one Work Will Commence on Structure hundred ton capacity and will differ Early in New Year – Meeting of somewhat from furnaces now in operation. Capitalists in New York. The ore for the furnace will be mined in the Randville district. John T. Jones is the leading spirit in the enterprise. The Press can state authoritatively that Iron Mountain is to become a pig iron Iron Mountain Press, Iron Mountain, manufacturing center. Dickinson County, Michigan, Volume 12, Architects are now engaged in making Number 45 [Thursday, March 26, 1908], the plans for a blast furnace to be erected page 1, column 4 here. The furnace is to be erected in the northern part of the city near Lake Antoine. New Blast Furnace. Work on the furnace will commence before the New Year is many weeks old.
    [Show full text]
  • The Complete Book on Ferroalloys
    The Complete Book on Ferroalloys (Ferro Manganese, Ferro Molybdenum, Ferro Niobium, Ferro Boron, Ferro Titanium, Ferro Tungsten, Ferro Silicon, Ferro Nickel, Ferro Chrome) Author: B.P Bhardwaj Format: Paperback ISBN: 9789381039298 Code: NI258 Pages: 480 Price: Rs. 2,775.00 US$ 250.00 Publisher: NIIR PROJECT CONSULTANCY SERVICES Usually ships within 5 days The Complete Book on Ferroalloys (Ferro Manganese, Ferro Molybdenum, Ferro Niobium, Ferro Boron, Ferro Titanium, Ferro Tungsten, Ferro Silicon, Ferro Nickel, Ferro Chrome) An alloy is a mixture or solid solution composed of metals. Similarly, Ferroalloys are the mixture of Iron with high proportion of other elements like manganese, aluminium or silicon. Alloying improves the physical properties like density, reactivity, Young’s modulus, electrical and thermal conductivity etc. Ferroalloys thus show different properties as mixture of different metals in different proportion exhibit a wide range of properties. Also, Alloying is done to alter the mechanical properties of the base metal, to induce hardness, toughness, ductility etc. The main demand of ferroalloys, nowadays is continuously increasing as the major use of such products are in the field of civil construction; decorative items; automobile; steel industry; electronic appliances. The book provides a wide idea to readers about the usage of appropriate raw material and the treatment involved in the processing of raw material to final produce, safety, uses and properties of raw material involved in the processes. This book concisely presents the core principles and varied details involved in processing of ferroalloys. The work includes detailed coverage of the major products like ferroaluminium, ferrosilicon, ferronickel, ferromolybdenum, ferrotungsten, ferrovanadium, ferromanganese and lesser known minor ferroalloys.
    [Show full text]
  • Charcoal As an Alternative Reductant in Ferroalloy Production: a Review
    processes Review Charcoal as an Alternative Reductant in Ferroalloy Production: A Review Gerrit Ralf Surup 1,*, Anna Trubetskaya 2 and Merete Tangstad 1 1 Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] 2 Department of Chemical Sciences, University of Limerick, V94 T9PX Castletroy, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +47-934-73-184 Received: 12 October 2020; Accepted: 3 November 2020; Published: 9 November 2020 Abstract: This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of challenges related to energy efficient charcoal production and formation of emissions in classical kiln technologies are discussed to underline the potential of bio-based reductant usage in ferroalloy reduction process. Keywords: charcoal; pyrolysis; bio-based reductant; ferroalloy industry; kiln 1.
    [Show full text]
  • Ferroalloy Industry of Ukraine: Current Status, Development Trends and Future Prospects
    GENERAL ASPECTS Ferroalloy Industry of Ukraine: Current Status, Development Trends and Future Prospects S.H. Grishchenko, V.S. Kutsin, P.A. Kravchenko, V.P. Soloshenko, O.L. Bespalov, S.L. Kudriavtsev – Ukrainian As- sociation of Ferroalloys Manufacturers (UkrFA) ABSTRACT: The activity of Ukrainian ferroalloy industry in 2003-2014 in conjunction with production indicators of mining and smelting complex of Ukraine has been analyzed. The data on status of raw material base, in particular, of manga- nese-ore raw materials have been presented; the drivers of increased import of high-quality manganese ore in Ukraine over the last years and associated changes in the deployed ferroalloy melting technologies have been analyzed. The production dynamics of main types of ferroalloys (manganese, silicon, nickel, titanium alloys and others) at the largest companies of ferroalloy industry, such as Nikopol, Zaporozhye, Stakhanov Ferroalloy Plants and Pobuzhsky Ferronickel Plant has been shown. It is reported about the key trends of ferroalloy production technique and technology improvement, such as tech- nical upgrading, equipment modernization; introduction of new energy-efficient and low-waste technologies in order to improve the quality and competitiveness of Ukrainian ferroalloys. Mining and smelting complex in general and ferroal- loy industry as its integral part play an important role in the national economy of Ukraine. Ukraine is among the lead- ing countries of the world in terms of production of and foreign trade in ferroalloys, and the most notably manganese alloys. As is known, global steel production according to WSA in 2014 reached its historical peak and amounted to 1.637 billion tons, that by 1.1% exceeds the level of 2013.
    [Show full text]
  • Eco-Friendly Cokeless-Cupola
    Eco-friendly cokeless-cupola S. D. SINGH, D. K. BISWAS, K. K. MISHRA and P. RAMACHANDRA RAO National Metallurgical Laboratory, Jamshedpur - 831 007, India Abstract : This paper envisages the developmental work on eco-friendly cokeless cupola at the National Metallurgical Laboratory, Jamshedpur. The normal Cupolas for melting cast-iron in major parts of the World are operating with coke as fuel and the emission from such cupolas have been found to he containing Suspended Particulate Material (SPM) in the range of 700 to 2500 mg/Nm3 with sulphur dioxide content of the order of 400-1000 mg/Nm3. From the pollution point of view, these figures are excessively high. The use of low sulphur gaseous/liquid fuel promises extremely low level of SPM and SOx and does not need any pollution control device and can very well be installed within any thickly populated municipal area. In view of the above, NML was entrusted by the Technology Information Forecasting and Assessment Coun- cil (TIFAC) of Department of Science & Technology (DST), Govt. of India, to design and develop a suitable eco-friendly cokeless cupola in order to provide indigenous technical know-how to the clusters of foundries located at various places in the Country. Key words : Eco-friendly cokeless cupola, Gaseous fuel, Liquid Fuel, SPM/S0,, Design & development of cokelsss cupola, Technology Evaluations. ' INTRODUCTION There are about 6000 foundries currently operating mostly as cluster in places like Rajkot, Agra, Batala, Coimbatore, Howrah, Belgaum, etc. Almost all of these are coke fired. Coke based foundries are plagued with pollution problems. Normal stack emission from foundries ranges from 700 to 2500 mg/Nm3 of SPM and SOx beyond 400 mg/Nm3.
    [Show full text]
  • Cadmium and Cadmium Compounds
    Locating and Estimating Air Emissions From Sources of Cadmium and Cadmium Compounds U. S. Environmental Protection Agency Office of Air and Radiation Office of Air Quality Planning and Standards Locating and Estimating Air Emissions From Sources of Cadmium and Cadmium Compounds Prepared for: Anne Pope Office of Air Quality Planning and Standards Technical Support Division U. S. Environmental Protection Agency Research Triangle Park, N.C. 27711 Prepared by: Midwest Research Institute 401 Harrison Oaks Boulevard, Suite 350 Cary, North Carolina 27513 TABLE OF CONTENTS Section Page 1 PURPOSE OF DOCUMENT ..................1-1 REFERENCES ....................1-4 2 OVERVIEW OF DOCUMENT CONTENTS .............2-1 3 BACKGROUND.......................3-1 NATURE OF POLLUTANT ................3-1 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ....3-4 Production..................3-4 Use.....................3-6 Emissions ..................3-6 REFERENCES ................... 3-13 4 EMISSIONS FROM CADMIUM PRODUCTION ...........4-1 CADMIUM REFINING AND CADMIUM OXIDE PRODUCTION ...4-1 Process Description .............4-3 Emissions and Controls ............4-6 CADMIUM PIGMENTS PRODUCTION ........... 4-11 Process Description ............ 4-14 Emissions and Controls ........... 4-19 CADMIUM STABILIZERS PRODUCTION ......... 4-20 Process Description ............ 4-22 Emission and Controls ........... 4-24 OTHER CADMIUM COMPOUND PRODUCTION ........ 4-25 Process Descriptions ............ 4-25 Emissions and Controls ........... 4-29 REFERENCES ................... 4-32 5
    [Show full text]
  • Making ^Anthracite Iron N the Eighteenth Century Charcoal Was the Principal Fuel Used for Smelting Iron
    discovery of the ^Process for (^Making ^Anthracite Iron N THE eighteenth century charcoal was the principal fuel used for smelting iron. When in the course of time the demand for I iron increased and the hardwood forests used for making charcoal became smaller, ironmasters looked for other fuels. In Britain and continental Europe they turned to soft coal, which was generally located near deposits of iron ore and from which coke could be made. Anthracite deposits were more scarce. Only a few of the many blast furnaces in Europe—those located near the veins of anthracite—would benefit if a way could be found to use this "stone coal/' as anthracite was then commonly called.1 The situation in the United States was far different, with the development of an entire industry at stake. Deposits of bituminous coal lay for the most part beyond the mountains, far from the centers of population and the extant means of transportation. The iron-rich ridges and valleys of eastern Pennsylvania and New Jersey, however, lay near extensive fields of anthracite. The canals which penetrated into the anthracite regions in the second quarter of the nineteenth century linked cities, towns, and deposits of iron ore, limestone, and anthracite like beads on a chain, 1 The first description of the discovery of the anthracite process appeared in 1841 in the form of a book and may have helped to advertise the process among ironmasters: Walter R. Johnson, Notes on the Use of Anthracite in the Manufacture of Iron with Some Remarks on Its Evaporating Power (Boston, 1841).
    [Show full text]