Crustal Structure of the Andean Foreland in Northern Argentina: Results from Data-Integrative Three-Dimensional Density Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cambrian System in Northwestern Argentina: Stratigraphical and Palaeontological Framework Discussion Geologica Acta: an International Earth Science Journal, Vol
Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Buatois, L.A.; Mángano, M.G. Discussion and reply: The Cambrian System in Northwestern Argentina: stratigraphical and palaeontological framework Discussion Geologica Acta: an international earth science journal, vol. 3, núm. 1, 2005, pp. 65-72 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50530107 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.3, Nº1, 2005, 65-72 Available online at www.geologica-acta.com Discussion and reply: The Cambrian System in Northwestern Argentina: stratigraphical and palaeontological framework Discussion L.A. BUATOIS and M.G. MÁNGANO CONICET- INSUGEO Casilla de correo 1 (correo central), 4000 San Miguel de Tucumán, Argentina. Present address: Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada. Buatois E-mail: [email protected] INTRODUCTION this rift corresponds to the early above-mentioned Punco- viscana basin”. This gives the wrong impression that there As part of the Special Issue on “Advances in the is some sort of consensus on this topic, which is incorrect. knowledge of the Cambrian System” edited by himself, Interestingly enough, this southern rift branch is perpendi- Aceñolaza (2003) attempted to summarize present know- cular to the Gondwana Pacific trench (see his figure 3), an ledge on the Cambrian of northwest Argentina. -
Mesh-Based Tectonic Reconstruction: Andean Margin Evolution Since the Cretaceous
Mesh-based tectonic reconstruction: Andean margin evolution since the Cretaceous Tomas P. O'Kane, Gordon S. Lister Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 43, paper 1 In: (Eds.) Stephen Johnston and Gideon Rosenbaum, Oroclines, 2012. Download from: http://virtualexplorer.com.au/article/2011/297/mesh-based-tectonic-reconstruction Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2012 Volume 43 Paper 1 http://virtualexplorer.com.au/ Mesh-based tectonic reconstruction: Andean margin evolution since the Cretaceous Tomas P. O'Kane Research School of Earth Sciences, The Australian National University, Canberra 0200 Australia. Email: [email protected] Gordon S. Lister Research School of Earth Sciences, The Australian National University, Canberra 0200 Australia. Abstract: In this contribution we demonstrate an example of what can be described as mesh-based tectonic reconstruction. -
4 Three-Dimensional Density Model of the Nazca Plate and the Andean Continental Margin
76 4 Three-dimensional density model of the Nazca plate and the Andean continental margin Authors: Andrés Tassara, Hans-Jürgen Götze, Sabine Schmidt and Ron Hackney Paper under review (September 27th, 2005) by the Journal of Geophysical Research Abstract We forward modelled the Bouguer anomaly in a region encompassing the Pacific ocean (east of 85°W) and the Andean margin (west of 60°W) between northern Peru (5°S) and Patagonia (45°S). The three-dimensional density structure used to accurately reproduce the gravity field is simple. The oceanic Nazca plate is formed by one crustal body and one mantle lithosphere body overlying a sub-lithospheric mantle, but fracture zones divide the plate into seven along-strike segments. The subducted slab was modelled to a depth of 410 km, has the same structure as the oceanic plate, but it is subdivided into four segments with depth. The continental margin consists of one upper-crustal and one lower-crustal body without lateral subdivision, whereas the mantle has two bodies for the lithosphere and two bodies for the asthenosphere that are separated across-strike by the downward prolongation of the eastern limit of active volcanism. We predefined the density for each body after studying its dependency on composition of crustal and mantle materials and pressure-temperature conditions appropriate for the Andean setting. A database containing independent geophysical information constrains the geometry of the subducted slab, locally the Moho of the oceanic and continental crusts, and indirectly the lithosphere-asthenosphere boundary (LAB) underneath the continental plate. Other geometries, especially that of the intracrustal density discontinuity (ICD) in the continental margin, were not constrained and are the result of fitting the observed and calculated Bouguer anomaly during the forward modelling. -
Crustal-Seismicity.Pdf
Tectonophysics 786 (2020) 228450 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data T ⁎ Agostina Venerdinia,b, , Patricia Alvaradoa,b, Jean-Baptiste Ammiratia,1, Marcos Podestaa, Luciana Lópezc, Facundo Fuentesd, Lepolt Linkimere, Susan Beckf a Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (Consejo Nacional de Investigaciones Científicas y Técnicas CONICET– Facultad de Ciencias Exactas, Físicas y Naturales, UNSJ), San Juan, Argentina b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina c Instituto Nacional de Prevención Sísmica, San Juan, Argentina d YPF S.A., Buenos Aires, Argentina e Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica f Department of Geosciences, University of Arizona, Tucson, AZ, United States ARTICLE INFO ABSTRACT Keywords: In this study, we analyze 100 crustal Precordilleran earthquakes recorded in 2008 and 2009 by 52 broadband Crust seismic stations from the SIEMBRA and ESP, two temporary experiments deployed in the Pampean flat slab Focal mechanism region, between the Andean Cordillera and the Sierras Pampeanas in the Argentine Andean backarc region. Fold-thrust belt In order to determine more accurate hypocenters, focal mechanisms and regional stress orientations, we Andean retroarc relocated 100 earthquakes using the JHD technique and a local velocity model. The focal depths of our relocated Flat slab events vary between 6 and 50 km. We estimated local magnitudes between 0.4 ≤ M ≤ 5.3 and moment South America L magnitudes between 1.3 ≤ Mw ≤ 5.3. -
Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J
Gondwana Research, G! 7, No. 4, pp. 1105-1 116. 0 2004 International Association for Gondwana Research, Japan. ISSN: 1342-937X Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J. Chernicoff and Eduardo 0. Zappettini2 Council for Scientific and Technical Research (CONICET),Universidad de Buenos Aires, E-mail: [email protected] ' Argentine Geological-Mining Survey (SEGEMAR). Av. Julio A. Roca 651, 8" piso, (1322) Buenos Aires, Argentina, E-mail: [email protected] * Corresponding author (Manuscript received July 24,2003; accepted January 26,2004) Abstract The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquen and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Rio ..... de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as we11 as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Rio de la Plata Craton, separated from each other by large-scale discontinuities. -
A History of Proterozoic Terranes in Southern South America: from Rodinia to Gondwana
+ MODEL GEOSCIENCE FRONTIERS -(-) (2011) 1e9 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf REVIEW A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, C.W. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologıa y Geoquımica, IGEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centro de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina c Visiting Research Associate, British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologıa y Recursos Naturales CSIC, 37071 Salamanca, Spain Received 3 August 2011; accepted 8 November 2011 KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro- Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal- Cratons; gamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. -
Provenance and Tectonic Implications of Orán Group Foreland Basin
Basin Research (2015) 1–17, doi: 10.1111/bre.12139 Provenance and tectonic implications of Oran Group foreland basin sediments,RıoIruyacanyon,NW Argentina (23° S) William H. Amidon,* Lisa V. Luna,* George B. Fisher,† Douglas W. Burbank,† Andrew R. C. Kylander-Clark† and Ricardo Alonso‡ *Middlebury College Geology Department, Middlebury, VT, USA †Earth Research Institute, University of California, Santa Barbara, CA, USA ‡Departamento de Geologıa, Universidad Nacional de Salta, Salta, Argentina ABSTRACT Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Rıo Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Oran Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U-Pb zircon ages from six interbedded ash layers and new magnet- ostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an aver- 1 age sedimentation rate of 0.93 0.02 (2r) km MyrÀ . We then pair U-Pb detrital zircon dating Æ with quartz trace-element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long-lived topographic barrier separated the eastern Puna from the foreland for much of the mid-late Miocene, and that the arrival of Jurassic-Neogene zircons records regional tectonic reactivation at ca. -
The Gondwana Margin: Proterozoic to Mesozoic
CORE Metadata, citation and similar papers at core.ac.uk Provided by EPrints Complutense The Gondwana margin: Proterozoic to Mesozoic The longevity and extent of the oceanic southern of '--'H��'.JAJ.J.'u., E. I.M. Gonzalez-Casado and I.A. Dahlquist Gondwana have made it the of intense study for more on "The Maz terrane: a Mesoproterozoic domain in the western than 70 years. It was one of the cradles of terrane and Sierras equivalent to the remains a proving ground for theories of Antofalla block of southern Peru? for West LL.L�""".LE, """'.LJL.LU''-'H and Investigation on this Gondwana evolution" sheds new light on the Middle margin, such as accretionary orogenesis and terrane analysis, is and Late Proterozoic evolution of the western Amazonia margin vital to our understanding of the Proterozoic and Phanerozoic that preceded final amalgamation of West Gondwana in the Late evolution of the continental crust. In this issue of Cambrian. The Maz terrane Gondwana Research, entitled "The West Gondwana Margin: Sierras Pampeanas) is recognised as a new continental terrane Proterozoic to Mesozoic", we have assembled 9 research papers that underwent Grenvillian-age orogeny and was thoroughly various of the evolution of the West the Ordovician Famatinian orogeny. Nd- and Gondwana margin, frrst at the international .L.Ln-''-'�'J.�F. allows correlation of Maz metasedi 'Gondwana 12 (Geological and Biological Heritage of Gond- rnp'nt�n"\T rocks with the Mesoproterozoic northern part of the wana)', held in in November 2005. Many -'-'J.�V.L<-"HU craton, of pre-Andean basement in concern southern South which has a continuous southern Peru. -
Key Officers List (UNCLASSIFIED)
United States Department of State Telephone Directory This customized report includes the following section(s): Key Officers List (UNCLASSIFIED) 9/13/2021 Provided by Global Information Services, A/GIS Cover UNCLASSIFIED Key Officers of Foreign Service Posts Afghanistan FMO Inna Rotenberg ICASS Chair CDR David Millner IMO Cem Asci KABUL (E) Great Massoud Road, (VoIP, US-based) 301-490-1042, Fax No working Fax, INMARSAT Tel 011-873-761-837-725, ISO Aaron Smith Workweek: Saturday - Thursday 0800-1630, Website: https://af.usembassy.gov/ Algeria Officer Name DCM OMS Melisa Woolfolk ALGIERS (E) 5, Chemin Cheikh Bachir Ibrahimi, +213 (770) 08- ALT DIR Tina Dooley-Jones 2000, Fax +213 (23) 47-1781, Workweek: Sun - Thurs 08:00-17:00, CM OMS Bonnie Anglov Website: https://dz.usembassy.gov/ Co-CLO Lilliana Gonzalez Officer Name FM Michael Itinger DCM OMS Allie Hutton HRO Geoff Nyhart FCS Michele Smith INL Patrick Tanimura FM David Treleaven LEGAT James Bolden HRO TDY Ellen Langston MGT Ben Dille MGT Kristin Rockwood POL/ECON Richard Reiter MLO/ODC Andrew Bergman SDO/DATT COL Erik Bauer POL/ECON Roselyn Ramos TREAS Julie Malec SDO/DATT Christopher D'Amico AMB Chargé Ross L Wilson AMB Chargé Gautam Rana CG Ben Ousley Naseman CON Jeffrey Gringer DCM Ian McCary DCM Acting DCM Eric Barbee PAO Daniel Mattern PAO Eric Barbee GSO GSO William Hunt GSO TDY Neil Richter RSO Fernando Matus RSO Gregg Geerdes CLO Christine Peterson AGR Justina Torry DEA Edward (Joe) Kipp CLO Ikram McRiffey FMO Maureen Danzot FMO Aamer Khan IMO Jaime Scarpatti ICASS Chair Jeffrey Gringer IMO Daniel Sweet Albania Angola TIRANA (E) Rruga Stavro Vinjau 14, +355-4-224-7285, Fax +355-4- 223-2222, Workweek: Monday-Friday, 8:00am-4:30 pm. -
From Rodinia to Gondwana
A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana C. Casquet a,*, c.w. Rapela b, R.J. Pankhurst c, E.G. Baldo d, C. Galindo a, C.M. Fanning e, J.A. Dahlquist d, J. Saavedra f a Departamento de Petrologia y Geoquimica, ICEO (Universidad Complutense, CSIC), 28040 Madrid, Spain b Centra de Investigaciones Geologicas (CONICET-UNLP), 1900 La Plata, Argentina C 'Visiting Research Associate, British Geological SUlVey, Keyworth, Nottingham NG12 SCC, United Kingdom d CICTERRA (CONICET-UNC), 5000 Cordoba, Argentina e Research School of Earth Sciences, The Australian National University, Canberra, Australia f Instituto de Agrobiologia y Recursos Naturales CSIC, 37071 Salamanca, Spain KEYWORDS Abstract The role played by Paleoproterozoic cratons in southern South America from the Mesopro Paleoproterozoic; terozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amal Cratons; gamation that led to formation of the supercontinent Rodinia, followed by N eoproterozoic continental Grenvillian; break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental Neoproterozoic rifting; re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early SW Gondwana assembly Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeograpbical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras 1. -
U-Pb Geochronology and Paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-Scale
Research Paper GEOSPHERE U-Pb geochronology and paleogeography of the Valanginian– Hauterivian Neuquén Basin: Implications for Gondwana-scale GEOSPHERE, v. 17, no. 1 source areas https://doi.org/10.1130/GES02284.1 E. Schwarz1,*, E.S. Finzel2,*, G.D. Veiga1, C.W. Rapela1, C. Echevarria3,*, and L.A. Spalletti1 1Centro de Investigaciones Geológicas (Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET]), Diagonal 113 #256 B1904DPK, La Plata, Argentina 13 figures; 2 tables; 1 set of supplemental files 2Earth and Environmental Science Department, University of Iowa, 115 Trowbridge Hall, Iowa City, Iowa 52242, USA 3Pampa Energía S.A. Gerencia Tight, Dirección de E&P, J.J. Lastra 6000, 8300 Neuquén, Argentina CORRESPONDENCE: [email protected] ABSTRACT starting in the mid-continent region of south- Early Cretaceous was the Neuquén Basin, which CITATION: Schwarz, E., Finzel, E.S., Veiga, G.D., western Gondwana and by effective sorting, was during that time was a backarc basin separated Rapela, C.W., Echevarria, C., and Spalletti, L.A., Sedimentary basins located at the margins bringing fine-grained or finer caliber sand to the from the proto–Pacific Ocean (i.e., to the west) by 2021, U-Pb geochronology and paleogeography of the of continents act as the final base level for con- Neuquén Basin shoreline. This delivery system was a discontinuous volcanic arc (Howell et al., 2005). Valanginian–Hauterivian Neuquén Basin: Implications for Gondwana-scale source areas: Geosphere, v. 17, tinental-scale catchments that are sometimes probably active (though not necessarily continu- This marine basin was bounded by the Sierra no. -
Provenance Study on Neoproterozoic Rocks of Nw Argentina: Puncoviscana Formation – First Results
U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 PROVENANCE STUDY ON NEOPROTEROZOIC ROCKS OF NW ARGENTINA: PUNCOVISCANA FORMATION – FIRST RESULTS ZIMMERMANN, U.1 1Dep.of Geol., RAU University, Auckland Park 2092, South Africa [email protected] INTRODUCTION Since more than 20 years the western border of Gondwana is object of controversies related to the basic question if crustal growth is related to terrane accretion or to “recycling” of the same crustal rocks during the Vendian and Lower Paleozoic. Different hypotheses were developed regarding the evolution of that margin. One of the key element to understand the crustal evolution, is the Vendian to Lower Cambrian so-called PVF. Turner (1960) described rock successions in northwestern Argentina (Fig. 1) of Pre-Ordovician age comprising greywackes and sand- and siltstones, but dominated by pelites as the PVF. Afterwards, it was established that mostly all Vendian to Lower Cambrian very-low to low grade metasedimentary rocks in the region are classified, such as Suncho, Negro Peinado or La Cébila Formation (e.g. comp. in Aceñolaza et al., 1988), are equivalents of the PVF. Widely distributed medium- to high-grade metasedimentary rocks (Fig. 1), those rocks were interpreted as exhumed deeper crustal levels of the PVF (Willner, 1990). Other authors deny this opinion and interpret the different metamorphic rocks related to different events, consequently of different ages (Mon and Hongn, 1990). Based on only punctual petrographic work, the depositional area was defined as a passive margin based on petrography and mainly major element geochemistry (Jezek, 1990, Willner et al., 1985, Rossi Toselli et al., 1997), or on preliminary trace element data (Do Campo and Ribeiro Guevara, 2002).