HVDC Electricity Transmission Lines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Voltage Direct Current Transmission – Proven Technology for Power Exchange
www.siemens.com/energy/hvdc High Voltage Direct Current Transmission – Proven Technology for Power Exchange Answers for energy. 2 Contents Chapter Theme Page 1 Why High Voltage Direct Current? 4 2 Main Types of HVDC Schemes 6 3 Converter Theory 8 4 Principle Arrangement of an HVDC Transmission Project 11 5 Main Components 14 5.1 Thyristor Valves 14 5.2 Converter Transformer 18 5.3 Smoothing Reactor 20 5.4 Harmonic Filters 22 5.4.1 AC Harmonic Filter 22 5.4.2 DC Harmonic Filter 25 5.4.3 Active Harmonic Filter 26 5.5 Surge Arrester 28 5.6 DC Transmission Circuit 31 5.6.1 DC Transmission Line 31 5.6.2 DC Cable 32 5.6.3 High Speed DC Switches 34 5.6.4 Earth Electrode 36 5.7 Control & Protection 38 6 System Studies, Digital Models, Design Specifications 45 7 Project Management 46 3 1 Why High Voltage Direct Current? 1.1 Highlights from the High Voltage Direct In 1941, the first contract for a commercial HVDC Current (HVDC) History system was signed in Germany: 60 MW were to be supplied to the city of Berlin via an underground The transmission and distribution of electrical energy cable of 115 km length. The system with ±200 kV started with direct current. In 1882, a 50-km-long and 150 A was ready for energizing in 1945. It was 2-kV DC transmission line was built between Miesbach never put into operation. and Munich in Germany. At that time, conversion between reasonable consumer voltages and higher Since then, several large HVDC systems have been DC transmission voltages could only be realized by realized with mercury arc valves. -
Cahora Bassa North Bank Hydropower Project
Hydropower Sustainability Assessment Protocol: Cahora Bassa North Bank Hydropower Project Cahora Bassa North Bank Hydropower Project Public Disclosure Authorized Hidroeléctrica de Cahora Bassa Public Disclosure Authorized Zambezi River Basin Introduction The hydropower resources of the Zambezi River Basin are central to sustaining economic development and prosperity across southern Africa. The combined GDP among the riparian states is estimated at over US$100 billion. With recognition of the importance of shared prosperity and increasing commitments toward regional integration, there is significant potential for collective development of the region’s rich natural endowments. Despite this increasing prosperity, Contents however, poverty is persistent across the basin and coefficients of inequality for some of the riparian states are among the highest in Introduction .......................................................................................... 1 the world. Public Disclosure Authorized The Hydropower Sustainability Assessment Protocol ......................... 4 Reflecting the dual nature of the regional economy, new investments The Project ............................................................................................ 3 in large infrastructure co-exist alongside a parallel, subsistence economy that is reliant upon environmental services provided by the The Process ........................................................................................... 8 river. Appropriate measures are therefore needed to balance -
Press Release HCB ANNOUNCES the IPO of up to 7.5% of ITS SHARES on the MOZAMBICAN STOCK EXCHANGE
Press Release HCB ANNOUNCES THE IPO OF UP TO 7.5% OF ITS SHARES ON THE MOZAMBICAN STOCK EXCHANGE • HCB is the concessionaire of the largest hydroelectric power plant in southern Africa, located in Songo, Northern Mozambique • Listing planned for July 2019 with shares offered to Mozambican nationals, companies and institutional investors at 3 Meticais per share • Vision of reach and inclusion to be achieved through innovative nationwide multibank distribution channels, mobile app and USSD platform Maputo, 21 May 2019 Hidroeléctrica de Cahora Bassa (HCB), the Mozambican concessionaire of the Cahora Bassa hydroelectric plant, the largest in southern Africa, yesterday launched its Initial Public Offer (IPO) for up to 7.5% of its shares to individual Mozambicans, national companies and institutional investors. The IPO will see a first tranche of 2.5% of its shares becoming available on the Mozambican stock exchange - Bolsa de Valores de Moçambique (“BVM”). HCB shares will be sold at 3 Meticais each with the subscription period taking place between 17 June and 12 July 2019. Nationwide roadshows and innovative channels have been created to ensure maximum reach and inclusion. Individuals will be able to place purchase orders through various Mozambican banks’ branch networks but also through a USSD mobile application, a mobile app and via internet banking. The Consortium BCI-BiG (BCI and BIG are two Mozambican banks), are the global coordinators for this IPO with other financial institutions supporting the placement of the shares through their branch networks. Maputo Office Head Office: Edifício JAT I – Av. 25 de Setembro, 420 – 6th Floor PO Box – 263 – Songo PO Box: 4120 PBX: +258 252 82221/4 | Fax: +258 252 82220 PBX: +258 21 350700| Fax: +258 21 314147 Pág. -
ENERGY March 2013, No
ENERGY March 2013, No. 3 (15) UPDATE PUBLISHED BY THE LITHUANIAN ELECTRICITY TRANSMISSION SYSTEM OPERATOR STRATEGIC PROJECTS IN THIS ISSUE: Litgrid and ABB signed a Litgrid Junior Professionals historical agreement on the Programme – construction of the LitPol Link perfect start for a career in power power interconnection facility engineering On 15 February 2013, the strategic LitPol Link power in- page 3 terconnection project between Lithuania and Poland reached a particularly important stage with the signing of an agreement on the design and construction of a direct current insert with a 400 kilovolts (kV) back-to-back converter station in Alytus. The agreement was signed between Litgrid, the Lithuanian electricity transmission system operator, and ABB, the global technology Litgrid and ABB have signed an agreement on outsourcing the direct company. Students prepare current insert with a 400 kV converter station in Alytus see page 2 electric energy TODAY AND TOMORROW plans for the next The plans of electricity network three decades development lie in the hands of page 7 competent specialists Antanas Jankauskas, leading network development plans; he engineer of the Litgrid System has been working in the system Planning and Research Division development division of the then has been working in the energy Lietuvos Energija since 1994. sector for more than 40 years. Over the course of his career, The engineer, who specialises in Mr Jankauskas has witnessed Sector news electricity systems and networks, the creation of the electri- has spent more than half of city transmission network as well his working life, 24 years, in the as himself contributing to the page 8 Leading engineer of the Litgrid Energy Planning Institute where expansion of the network. -
Progress of Baltic Synchronisation with Continental Europe
Progress of Baltic synchronisation with continental Europe Hannes Kont Director of the synchronisation program Why? Facilities for the control of transmission of electricity in the Baltic States are located in Russia. Environmental impact of Capacities: 337 GW Russian electricity is unknown. Peak load: 215 GW Possibilities for electricity production and trade are limited. Synchronisation targets • By the end of 2025, we will disconnect the power systems of the Baltic States from Russia and join the Continental Europe power network and the respective frequency area. • We will mitigate the political, social and economic risks associated with the eastern neighbour. • New markets will be opened in order to improve competitiveness of business. • We will ensure energy security. Agreement on the conditions for interconnection • Signed by Elering (EE), Litgrid (LT), AST (LV), PSE (PL), select Regional Groups of Continental Europe, and main network operators on 20 May 2019 • Establishes rights and obligations regarding the synchronized connection of the Baltic power network to the Continental Europe Synchronous Area (CESA) • Main requirements: • Additional studies on dynamic stability • Transmission capacity tests • Island operation tests • Compliance with the terms and conditions, RGCE MLA Operating Handbook and SAFA What are we doing? • Existing networks are being reinforced and reconstructed, interconnection capacities increased. • To ensure frequency stability, system inertia in the Baltic power system should be provided 24/7; therefore, synchronous condensers will be constructed and the protection and control systems of the grid as well as direct current links will be upgraded. • The present direct current interconnection between Lithuania and Poland is being reconstructed into an alternating current interconnection (LitPol Link). -
GMPC Enables Energy Transmission Over Interconnected SAPP Grid
1 GMPC Enables Energy Transmission over Interconnected SAPP Grid Pieter V. Goosen, Peter Riedel, John W. Strauss away. The main ac and dc loads are each dedicated to a Abstract—The Grid Master Power Controller (GMPC) busbar. The HVDC bus is defined as the “DC bus”, whereas controls the generation at the Cahora Bassa hydro power the Bindura ac line feeding Zimbabwe is normally station in Mozambique and its dispatch through parallel ac connected to the “AC bus”. The low power local ac loads and dc interconnections. The bulk dc power flows directly to South Africa while ac power is delivered to Zimbabwe that is (not shown in Fig. 1), i.e. two 220 kV lines to Tete in also interconnected with the South African ac grid. This paper Mozambique and system auxiliaries may be connected to describes the GMPC functions in its various control modes either busbar. The GMPC is prepared for future braking that are required for the system configurations. resistors. The 2 x 960 MW bipolar HVDC system is rated It features adaptive gain and offset compensation for precision for 1800 A and ±533 kV. Each pole consists of four six- open-loop control of the HVDC and the turbines; robust pulse bridges each rated for 133.3 kV and 240 MW. control strategies for non-responsive generation or Bus Coupler transmission; fast GPS-based angle measurement for damping Closed Bus_DC control; robust automatic control-mode-selection independent Bus_AC Songo of remote signalling; controls for proposed braking resistors; Line Breaker and smooth and safe control transfers between the GMPC and Closed its emergency standby controller (EC). -
773070V30esmap0ora0bassa0
Public Disclosure Authorized Public Disclosure Authorized The Potential of Regional Power Sector Integration Cahora Bassa | Generation Case Study Public Disclosure Authorized Submitted to ESMAP by: Economic Consulting Associates August 2009 Public Disclosure Authorized Economic Consulting Associates Limited 41 Lonsdale Road, London NW6 6RA, UK tel: +44 20 7604 4545, fax: +44 20 7604 4547 email: [email protected] Contents Contents Abbreviations and acronyms iii Preface v 1 Executive summary 1 1.1 Motivations/objectives for trade 1 1.2 The trade solution put in place 1 1.3 Current status and future plans 1 2 Context for trade 3 2.1 Economic and political context 3 2.2 Supply options 4 2.3 Demand 5 2.4 Energy tariffs 5 3 History of scheme 7 3.1 Overview including timeline/chronology 7 3.2 Project concept, objectives, and development 9 3.3 Feasibility studies done 11 3.4 Assets built and planned 12 3.5 Interconnections and electricity trade 13 3.6 Environmental and social issues 14 4 Institutional arrangements 18 4.1 Governance structure 18 4.2 Role of national governments and regional institutions 18 4.3 Regulatory agencies 19 4.4 Role of outside agencies 19 5 Contractual, financial and pricing arrangements 21 5.1 Contracts 21 Cahora Bassa Case Study REGIONAL POWER SECTOR INTEGRATION: LESSONS FROM GLOBAL CASE STUDIES AND A LITERATURE REVIEW i ESMAP Briefing Note 004/10 | June 2010 Contents 5.2 Ownership and finance 22 5.3 Pricing arrangements 24 6 Future Plans 27 Bibliography 28 Tables and figures Tables Table 1 Cahora Bassa Chronology -
Recent Publications on Lusophone Africa
H-Luso-Africa Recent publications on Lusophone Africa Discussion published by Kathleen Sheldon on Wednesday, November 6, 2019 This list of recent publications includes a wonderful range of research on gender, mining, health, religion, history, and more. The blog entries include analyses of the recent elections and politics in Mozambique, check it out! To share your own recent publication information with our network, please send in full citation format and if possible, with a link, to [email protected]. Virginie Tallio, “Vaccination policies and State-building in post-war Angola,” in Gender a výzkum/Gender and Research 20, 1 (2019): 106-127 https://www.genderonline.cz/en/issue/47-volume-20-number-1-2019-contested-borde rs-transnational-migration-and-gender/565 Virginie Tallio, “L'entrée de nouveaux acteurs sur la scène des projets de développement sanitaires: altération ou maintien du concept de santé publique? L'exemple de la responsabilité sociale des entreprises pétrolières en Angola,” in Autrepart, 83, 3 (2017): 121-139 [just published in 2019 despite 2017 date] https://www.cairn.info/revue-autrepart-2017-3-page-121.htm Virginie Tallio, “La responsabilité sociale des entreprises: modèle de santé publique ou régime de santé globale? L’exemple des entreprises pétrolières en Angola,” in Sciences Sociales et Santé, 35, 3 (September 2017): 81-104 [just published in 2019 despite 2017 date] https://www.cairn.info/revue-sciences-sociales-et-sante-2017-3-page-81.htm Victor Igreja, “Negotiating Relationships in Transition: War, Famine, and Embodied Accountability in Mozambique,” Comparative Studies in Society and History 61, 4 (October 2019): 774-804 https://www.cambridge.org/core/journals/comparative-studies-in-society-and-history/ article/negotiating-relationships-in-transition-war-famine-and-embodied- accountability-in-mozambique/CAAC4E979078C22B14AC78236CE60B0F Jeremy Ball “‘From Cabinda to Cunene’: Monuments and the Construction of Angolan Nationalism since 1975,”Journal of Southern African Studies pre- publication view Citation: Kathleen Sheldon. -
Download This Article in PDF Format
MATEC Web of Conferences 336, 05020 (2021) https://doi.org/10.1051/matecconf/202133605020 CSCNS2020 The interconnection exchange and complex systems properties in power grid network Piotr Hadaj*, Marek Nowak1, and Dominik Strzałka1 1Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland Abstract. A case study based on the real data obtained from the Polish PSE System Operator of the highest voltages electrical energy network is shown. The data about the interconnection exchange and some complex networks (graphs) parameters were examined, after the removal of selected nodes. This allowed to test selected network parameters and to show that the breakdown of only three nodes in this network can cause significant drop of its average efficiency. 1 Introduction The concept of complex systems and related theory give many interesting applications in modelling different real systems [1]. One of examples are power systems which can be exposed on different threats even leading to the risk of potential blackouts [2]. In this short paper, the real electrical network as a graph of nodes and edges is shown. Some of this network topological parameters are given and the interconnection exchange as an example of the power system security is shown. Selected parameters of complex networks are calculated and the removal of some network nodes caused by failure was done. This leads to the changes in the whole network topology shown in tables. The most important is the drop of network efficiency and in turn, the increase of transmission costs. The paper is organized as follows: after the short Introduction in Section 2 we show the complex systems and networks theory. -
2018 International High Voltage Direct Current Conference in Korea October 30(Tue) - November 2(Fri) 2018, Gwangju, Korea
http://hvdc2018.org 2018 International High Voltage Direct Current Conference in Korea October 30(Tue) - November 2(Fri) 2018, Gwangju, Korea Supported by Sponsored by 2018 International High Voltage Direct Current Conference in Korea Time table Date Plan Time Topic Speaker Co-chair/Moderator Oct.30 Welcome Party 18:00 - 20:00 Event with BIXPO 2018 Opening Ceremony 13:30 - 13:40 Chairman KOO, Ja-Yoon Opening Welcome Address Chair: Ceremony 13:40 - 13:50 Congratulation Address CESS President Dr. KIM, Byung-Geol 13:50 - 14:00 Congratulation Address KEPCO President Plenary session 1: Arman Hassanpoor 14:00 - 14:40 On Development of VSCs for HVDC Applications (ABB) Plenary session 2: Oct.31 14:40 - 15:20 Shawn SJ.Chen Introductionof China HVDC Development (NR Electric Co., Ltd) Co-chair: Plenary 15:20 - 15:30 Coffee Break Arman Hassanpoor Session Plenary session 3: Prof. KIM, Seong-Min 15:30 - 16:10 Introduction of KEPCO’s HVDC East-West Power KIM, Jong-Hwa Grid Project (KEPCO) Plenary session 4: Prof. Jose ANTONIO JARDINI 16:10-16:50 The Brazilian Interconnected Transmission System (ERUSP University) Oral Session 1: Testing experiences on extruded cable systems Giacomo Tronconi 09:10-09:40 up to 525kVdc in the first third party worldwide (CESI) laboratory Oral Session 2: An optimal Converter Transformer and Valves Yogesh Gupta (GE T&D INDIA Ltd) 09:40 - 10:10 arrangement & Challenges in Open Circuit Test for B Srikanta Achary (GE T&D INDIA Ltd) Parallel Bipole LCC HVDC System with its Mitigation 10:10 - 10:20 Coffee Break Co-chair: Conference Oral Session 3: Mats Andersson 10:20 - 10:50 Overvoltages experienced by extruded cables in Mansoor Asif Prof. -
Part 3 Energy Policy: the Achilles Heel of the Baltic States
THE BALTIC STATES IN THE EU: YEstERDAY, TODAY AND TOMORROW Extract from: A. Grigas, A. Kasekamp, K. Maslauskaite, L.Zorgenfreija, “The Baltic states in the EU: yesterday, today and tomorrow”, Studies & Reports No 98, Notre Europe – Jacques Delors Institute, July 2013. PART 3 ENERGY POLICY: THE ACHILLES HEEL OF THE BALTIC STATES by Dr. Agnia Grigas INTRODUCTION Nearly a decade following EU accession, the energy sector remains the most vulnerable national arena for Estonia, Latvia and Lithuania – an “Achilles heel” of the three Baltic states. The vulnerability stems from the fact that the energy sectors of the three states remain inextricably linked to and fully depended on Russia while they are virtually isolated from the rest of the EU, making them “energy islands”. This predicament is not only of concern to statesmen and strategists as energy effects almost every aspect of the Baltic states – the economy, industry and the wellbeing of citizens. The rapid inflation of the mid 2000s leading to the economic overheating and eventual economic crisis in 2008 was in part due to the rapidly accelerating costs of Russian gas and oil. Industry which accounts for a significant portion of total gas consumed (50%1 of total gas consumed in Lithuania, 21%2 in Estonia, 14%3 in Latvia) was also hard-hit. Gas prices are particularly sensitive for households who depend on gas for heating in the winter months, making up 10%4 of total gas used in Estonia in 2011, 9%5 in Latvia, and 5%6 in Lithuania, which represents 10 to 15% of their post-tax income7. -
Energy Highlights
G NER Y SE E CU O R T I A T Y N NATO ENERGY SECURITY C E CENTRE OF EXCELLENCE E C N T N R E E LL OF EXCE ENERGY HIGHLIGHTS ENERGY HIGHLIGHTS 1 The Synchronization of the Baltic States’: Geopolitical Implications on the Baltic Sea Region and Beyond by Justinas Juozaitis INTRODUCTION he Baltic States remain the last countries In here, one should note that both Belarus and within the Euroatlantic space whose elec- Russia have specific cards to play in achieving tricity grids continue to operate synchro- their aims. For example, Russia has a competi- nously with the Russian Integrated Power tive edge in the Baltic electricity market as the TSystem/Unified Power System (IPS/UPS). On 28 country does not follow the EU’s environmen- June 2018, after a long marathon of multilateral tal policies. Free of environmental regulations, negotiations and decades of prior discussions, Russia can apply pressure on the Baltic States Lithuania, Latvia, and Estonia had finally agreed by positioning the withdrawal from electricity to synchronize their power systems with the trade with the 3rd countries as an economically Continental European Network (CEN) through irrational decision. Russia’s experience in framing Poland. With European Union allocating €323 negative opinion towards strategic energy pro- million in January 20191 and additional €720 mil- jects in the neighbouring states is plentiful. lion in October 20202 for synchronizing Lithu- anian, Latvian and Estonian power systems, the Moreover, Russia is moving faster with its prepa- Baltic flagship energy project gains momentum. rations for the desynchronization of the Baltic States from IPS/UPS than they are doing so them- Given the joint Baltic and Polish political com- selves.