Petromyzon Marinus)

Total Page:16

File Type:pdf, Size:1020Kb

Petromyzon Marinus) University of Kentucky UKnowledge Theses and Dissertations--Biology Biology 2016 Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus) Stephanie A. Bryant University of Kentucky, [email protected] Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.265 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Bryant, Stephanie A., "Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus)" (2016). Theses and Dissertations--Biology. 37. https://uknowledge.uky.edu/biology_etds/37 This Master's Thesis is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Stephanie A. Bryant, Student Dr. Jeramiah Smith, Major Professor Dr. Dave Westneat, Director of Graduate Studies CHARACTERIZATION OF SOMATICALLY-ELIMINATED GENES DURING DEVELOPMENT OF THE SEA LAMPREY (PETROMYZON MARINUS) THESIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the College of Arts and Sciences at the University of Kentucky By Stephanie Bryant Lexington, KY Director: Jeramiah Smith, Professor of Biology Lexington, Kentucky 2016 Copyright© Stephanie Bryant 2016 ABSTRACT OF THESIS CHARACTERIZATION OF SOMATICALLY-ELIMINATED GENES DURING DEVELOPMENT OF THE SEA LAMPREY (PETROMYZON MARINUS) The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during early development that facilitate the elimination of ~20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a transcriptomic dataset derived from adult germline and the embryonic stages encompassing PGR. Validation studies identified 44 germline-specific genes and characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that several of these genes are differentially expressed during early embryogenesis and presumably function in early development of the germline. Ontology analyses indicate that many of these genes play known roles in germline development, pluripotency, and oncogenesis (when misexpressed). These studies provide support for the theory that PGR serves to segregate molecular functions related to germline development/pluripotency in order to prevent their potential misexpression in somatic cells. This larger set of eliminated genes also allows us to extend the evolutionary/developmental breadth of this theory, as some deleted genes (or their gnathostome homologs) appear to be associated with the early development of somatic lineages, perhaps through the evolution of novel functions within gnathostome lineages. Keywords: Lamprey, Development, Genome, Rearrangement, Vertebrate Stephanie A. Bryant April 29th 2016 CHARACTERIZATION OF SOMATICALLY-ELIMINATED GENES DURING DEVELOPMENT OF THE SEA LAMPREY (PETROMYZON MARINUS) By Stephanie Bryant Dr. Jeramiah Smith Director of Thesis Dr. Dave Westneat Director of Graduate Studies April 29th 2016 ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Jeramiah Smith for his guidance throughout my graduate school career. I am grateful for his patience as he taught me the laboratory techniques and data analysis methods that made this thesis possible and for his guidance during the writing process. I would also like to thank Dr. Ashley Seifert for his unwavering confidence in me, Dr. Ann Morris for her continual encouragement and excellent Halloween parties, and Dr. Randal Voss for his professional insight and for allowing me to foray into axolotl research. In addition, I would like to thank Melissa Keinath and Joseph Herdy for their support and friendship, and Dr. Lakshmi Pillai of the Morris Lab for her infinite wisdom and sage advice. I also thank Brett Spear and Shirley Qui for granting access to real-time PCR resources used in this project. This work was funded by grants awarded to Dr. Jeramiah Smith and Dr. Chris Amemeyia by the National Institute of Health. Finally, I thank Josh Rock for his support and encouragement throughout the duration of my graduate career. iii TABLE OF CONTENTS Acknowledgements……………………………………………………….……………...iii List of Figures………………………………………………………….…………........…iv Section 1: Introduction…………………………………………………………...…...…...1 Section 2: Background………………………………...…………………………………..4 Section 3: Materials and Methods…...………...………………………………………….7 Animals…………………………………………………………..………………..7 Lamprey Embryos……………...…………………………………………………7 RNA Sequencing…………………………………………………………..……...8 Screening for Somatically-Eliminated Fragments……………………………...…8 Sequencing PCR Products………………………………………………………...9 Nanostring Gene Expression Analysis……………………………...…………...10 Real-Time PCR……………………………...……………………………..……11 Differential Expression Analysis………...………………………………………12 Gene Ontology Analysis…………………………………………………………12 Section 4: Results and Discussion…………………………………..……………………14 RNA Sequencing………………………………………………..…………….… 14 Screening for Somatically-Eliminated Fragments……….……………………….15 Real-Time PCR………………………………..…………………………………18 Nanostring Gene Expression Analysis……….…………………………………..19 Gene Ontology………………………………….………………………………..23 Section 5: Conclusions….…...………………………………………………………...…27 Vita……...…………………………………………………………………………….….33 iv LIST OF FIGURES Figure 1, Subset of validated deletions with homology information……………….……16 Figure 2, Full set of validated eliminations (n=44) …………………………………..…17 Figure 3, Relative abundance of a subset (n=23) of somatically-depleted genes based on qPCR in genomic DNA …………………………………………………………………19 Figure 4, Transcriptional profile and differential expression of somatically-depleted genes based on RNAseq estimates.…………………………………………………………..…21 Figure 5, Transcription and differential expression of somatically-depleted genes based on Nanostring estimates. …………………………………………………………….…..22 v SECTION 1- INTRODUCTION The sea lamprey (Petromyzon marinus) is a basal vertebrate representative of a lineage that diverged from our own ~550 million years ago, and is one of few vertebrates that undergo broad-scale programmed genome rearrangement (PGR) events (Smith, et al. 2009; Smith, et al. 2012). These events occur at 2.5 days post-fertilization (dpf), coinciding approximately with the mid-blastula transition, and facilitate the deletion of approximately 20% of the germline genome from the somatic cell lineage (Smith, et al. 2009). Genome and transcriptome sequencing indicates that a large number of single- copy DNAs, gene-coding fragments, and transcribed genes are eliminated during PGR, and many of these genes appear to correspond to human homologs related to germline pluripotency (Smith, et al. 2009; Smith, et al. 2012; Smith, et al. 2013). Previously identified genes eliminated during PGR include those with roles in cell proliferation (cancer/testis antigen 68, WNT7A/B), tumor suppression (RNA Binding Motif 47), and tumor progression and metastasis (Lysophosphatidic Acid Receptor 1) (Maglott, et al. 2011; Smith, et al. 2012). Somatic misexpression of genes with pluripotency/germline- specific functions may contribute to cancers or other disease states. (Hanahan and Weinberg 2000). As such, it is theorized that PGR may act as a permanent gene silencing mechanism that serves to limit pluripotency functions to the germline to prevent their misexpresson in the soma. While many of the genes eliminated during PGR are related to germline biology, many others have yet to be characterized. Studies aimed at identifying and characterizing a larger catalog of eliminated genes may provide further insight into the biological role of 1 PGR. The deep vertebrate ancestry of the sea lamprey
Recommended publications
  • Transcriptional Regulation of RKIP in Prostate Cancer Progression
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Sciences Transcriptional Regulation of RKIP in Prostate Cancer Progression Submitted by: Sandra Marie Beach In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Examination Committee Major Advisor: Kam Yeung, Ph.D. Academic William Maltese, Ph.D. Advisory Committee: Sonia Najjar, Ph.D. Han-Fei Ding, M.D., Ph.D. Manohar Ratnam, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: May 16, 2007 Transcriptional Regulation of RKIP in Prostate Cancer Progression Sandra Beach University of Toledo ACKNOWLDEGMENTS I thank my major advisor, Dr. Kam Yeung, for the opportunity to pursue my degree in his laboratory. I am also indebted to my advisory committee members past and present, Drs. Sonia Najjar, Han-Fei Ding, Manohar Ratnam, James Trempe, and Douglas Pittman for generously and judiciously guiding my studies and sharing reagents and equipment. I owe extended thanks to Dr. William Maltese as a committee member and chairman of my department for supporting my degree progress. The entire Department of Biochemistry and Cancer Biology has been most kind and helpful to me. Drs. Roy Collaco and Hong-Juan Cui have shared their excellent technical and practical advice with me throughout my studies. I thank members of the Yeung laboratory, Dr. Sungdae Park, Hui Hui Tang, Miranda Yeung for their support and collegiality. The data mining studies herein would not have been possible without the helpful advice of Dr. Robert Trumbly. I am also grateful for the exceptional assistance and shared microarray data of Dr.
    [Show full text]
  • De Novo, Systemic, Deleterious Amino Acid Substitutions Are Common in Large Cytoskeleton‑Related Protein Coding Regions
    BIOMEDICAL REPORTS 6: 211-216, 2017 De novo, systemic, deleterious amino acid substitutions are common in large cytoskeleton‑related protein coding regions REBECCA J. STOLL1, GRACE R. THOMPSON1, MOHAMMAD D. SAMY1 and GEORGE BLANCK1,2 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida; 2Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA Received June 13, 2016; Accepted October 31, 2016 DOI: 10.3892/br.2016.826 Abstract. Human mutagenesis is largely random, thus large Introduction coding regions, simply on the basis of probability, represent relatively large mutagenesis targets. Thus, we considered Genetic damage is largely random and therefore tends to the possibility that large cytoskeletal-protein related coding affect the larger, functional regions of the human genome regions (CPCRs), including extra-cellular matrix (ECM) more frequently than the smaller regions (1). For example, coding regions, would have systemic nucleotide variants that a systematic study has revealed that cancer fusion genes, on are not present in common SNP databases. Presumably, such average, are statistically, significantly larger than other human variants arose recently in development or in recent, preceding genes (2,3). The large introns of potential cancer fusion genes generations. Using matched breast cancer and blood-derived presumably allow for many different productive recombina- normal datasets from the cancer genome atlas, CPCR single tion opportunities, i.e., many recombinations that would allow nucleotide variants (SNVs) not present in the All SNPs(142) for exon juxtaposition and the generation of hybrid proteins. or 1000 Genomes databases were identified. Using the Protein Smaller cancer fusion genes tend to be associated with the rare Variation Effect Analyzer internet-based tool, it was discov- types of cancer, for example EWS RNA binding protein 1 in ered that apparent, systemic mutations (not shared among Ewing's sarcoma.
    [Show full text]
  • RNA-Seq Transcriptome Analysis Of
    on: Sequ ati en er c Le Luyer et al, Next Generat Sequenc & Applic 2015, 2:1 n in e g G & t x A DOI: 10.4172/2469-9853.1000112 e p Journal of p N l f i c o a l t a i o n r ISSN: 2469-9853n u s o J Next Generation Sequencing & Applications Research Article Open Access RNA-Seq Transcriptome Analysis of Pronounced Biconcave Vertebrae: A Common Abnormality in Rainbow Trout (Oncorhynchus mykiss, Walbaum) Fed a Low-Phosphorus Diet Le Luyer J1, Deschamps MH1, Proulx E1, Poirier Stewart N1, Droit A2, Sire JY3, Robert C1 and Vandenberg GW1* 1Département of des sciences animales, Pavillon Paul-Comtois, Université Laval, Québec, QC, Canada G1V 0A6, Canada 2Department of Molecular Medicine, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2 Canada 3Institut de Biologie Paris-Seine, UMR 7138-Evolution Paris-Seine, Université Pierre et Marie Curie, Paris, France Abstract The prevalence of bone deformities, particularly linked with mineral deficiency, is an important issue for fish production. Juvenile triploid rainbow trout (Oncorhynchus mykiss) were fed a low-phosphorus (P) diet for 27 weeks (60 to 630 g body mass). At study termination, 24.9% of the fish fed the low-P diet displayed homogeneous biconcave vertebrae (deformed vertebrae phenotype), while 5.5% displayed normal vertebral phenotypes for the entire experiment. The aim of our study was to characterize the deformed phenotype and identify the putative genes involved in the appearance of P deficiency-induced deformities. Both P status and biomechanical measurements showed that deformed vertebrae were significantly less mineralized (55.0 ± 0.4 and 59.4 ± 0.5,% ash DM, for deformed and normal vertebrae, respectively) resulting in a lower stiffness (80.3 ± 9.0 and 140.2 ± 6.3 N/mm, for deformed and normal phenotypes, respectively).
    [Show full text]
  • Investigating the Effect of Chronic Activation of AMP-Activated Protein
    Investigating the effect of chronic activation of AMP-activated protein kinase in vivo Alice Pollard CASE Studentship Award A thesis submitted to Imperial College London for the degree of Doctor of Philosophy September 2017 Cellular Stress Group Medical Research Council London Institute of Medical Sciences Imperial College London 1 Declaration I declare that the work presented in this thesis is my own, and that where information has been derived from the published or unpublished work of others it has been acknowledged in the text and in the list of references. This work has not been submitted to any other university or institute of tertiary education in any form. Alice Pollard The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. 2 Abstract The prevalence of obesity and associated diseases has increased significantly in the last decade, and is now a major public health concern. It is a significant risk factor for many diseases, including cardiovascular disease (CVD) and type 2 diabetes. Characterised by excess lipid accumulation in the white adipose tissue, which drives many associated pathologies, obesity is caused by chronic, whole-organism energy imbalance; when caloric intake exceeds energy expenditure. Whilst lifestyle changes remain the most effective treatment for obesity and the associated metabolic syndrome, incidence continues to rise, particularly amongst children, placing significant strain on healthcare systems, as well as financial burden.
    [Show full text]
  • Dual Specificity Phosphatases from Molecular Mechanisms to Biological Function
    International Journal of Molecular Sciences Dual Specificity Phosphatases From Molecular Mechanisms to Biological Function Edited by Rafael Pulido and Roland Lang Printed Edition of the Special Issue Published in International Journal of Molecular Sciences www.mdpi.com/journal/ijms Dual Specificity Phosphatases Dual Specificity Phosphatases From Molecular Mechanisms to Biological Function Special Issue Editors Rafael Pulido Roland Lang MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rafael Pulido Roland Lang Biocruces Health Research Institute University Hospital Erlangen Spain Germany Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal International Journal of Molecular Sciences (ISSN 1422-0067) from 2018 to 2019 (available at: https: //www.mdpi.com/journal/ijms/special issues/DUSPs). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-688-8 (Pbk) ISBN 978-3-03921-689-5 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ....................................
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Gene Regulation by Different Proteins of Tgfβ Superfamily
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1404 Gene regulation by different proteins of TGFβ superfamily VARUN MATURI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0172-3 UPPSALA urn:nbn:se:uu:diva-334411 2018 Dissertation presented at Uppsala University to be publicly examined in Room B42, BMC, Husargatan 3, Uppsala, Monday, 29 January 2018 at 09:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Senior Researcher Anita Göndör (Karolinska Institutet). Abstract Maturi, V. 2018. Gene regulation by different proteins of TGFβ superfamily. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1404. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0172-3. The present thesis discusses how gene regulation by transforming growth factor β (TGFβ) family cytokines is affected by post-translational modifications of different transcription factors. The thesis also focuses on gene regulation by transcription factors involved in TGFβ signaling. The importance of the poly ADP-ribose polymerase (PARP) family in controlling gene expression in response to TGFβ and bone morphogenetic protein (BMP) is analyzed first. PARP2, along with PARP1, ADP-ribosylates Smad2 and Smad3, the signaling mediators of TGFβ. On the other hand, poly ADP-ribose glycohydrolase (PARG) removes the ADP-ribose from Smad2/3 and antagonizes PARP1 and PARP2. ADP-ribosylation of Smads in turn affects their DNA binding capacity. We then illustrate how PARP1 and PARG can regulate gene expression in response to BMP that signals via Smad1, 5. Over-expression of PARP1 suppressed the transcriptional activity of Smad1/5.
    [Show full text]
  • Nature's Solution to a Hard-Soft Interface Lara Angelika Dorothée Kuntz
    Technische Universität München Fakultät für Medizin The enthesis: nature’s solution to a hard-soft interface Lara Angelika Dorothée Kuntz Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Gil G. Westmeyer Prüfende der Dissertation: 1. apl. Prof. Dr. Rainer Burgkart 2. Prof. Dr. Andreas Bausch 3. Prof. Dr. Felix Eckstein Die Dissertation wurde am 10.05.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 21.02.2018 angenommen. Prefix This dissertation was part of the biomaterials focus group project “The enthesis: Nature’s solution to a hard-soft junction“ funded by the International Graduate School of Science and Engineering (IGSSE) of the Technical University of Munich. It was a collaborative project between the Technical University of Munich Clinics of Orthopedics/Sports Orthopedics and the Chair of Cellular Biophysics. Herewith I would like to thank everybody who contributed to this thesis directly or indirectly. It was a very lively, interesting time and many have contributed to it being fun and productive. I thank my advisors Professor Rainer Burgkart and Professor Andreas Bausch for supervi- sion and guidance. Thank you, Rainer, for keeping me motivated to dig deep into the Achilles heel with your positive attitude and your passion for the enthesis. Thank you, Andreas, for your scientific advice and for important lessons for life. Thank you both for giving me the freedom to develop project ideas on my own, yet giving me guidance and direction when I felt stuck.
    [Show full text]
  • Developmental Plasticity in Response to Embryo Cryopreservation: the Importance of the Vitrification Device in Rabbits
    Developmental plasticity and transgenerational reprogramming following vitrified embryo transfer in Oryctolagus cuniculus Ph.D. Thesis by Ximo García Domínguez Supervisors Francisco Marco Jiménez José Salvador Vicente Antón València, June 2020 UNIVERSITAT POLITÈCNICA DE VALÈNCIA Developmental plasticity and transgenerational reprogramming following vitrified embryo transfer in Oryctolagus cuniculus A thesis submitted to the Polytechnic University of Valencia in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Ximo García Domínguez Sig. Thesis Directors Prof. Francisco Marco Jiménez Prof. José Salvador Vicente Antón Sig. Sig. A la memoria de mi abuelo, Juan García Genís ACKNOWLEDGEMENTS AGRADECIMIENTOS “Tal vez la gratitud no sea la virtud más importante, pero sí es la madre de todas las demás”. Marco Tulio Cicerón AGRADECIMIENTOS Esta parte, desde mi punto de vista, podría ser considerada la más importante de una tesis, y también la más difícil de escribir, puesto que gracias a lo que implica el contenido de estas líneas seguramente haya sido capaz de escribir el resto del documento. El doctorado es un camino que saca, pero al mismo tiempo exige, lo mejor de ti, tanto a nivel profesional como mayoritariamente personal. Por ello, el apoyo y el cariño de todas las personas que han compartido conmigo este tiempo han contribuido, de una manera u otra, a que este documento esté hoy en tus manos. Y es que cuando alguien empieza una tesis doctoral no solo está asumiendo que su vida cambie radicalmente, sino también la de todos aquellos familiares, amigos y compañeros que le acompañan durante el proceso. Por ello, estas líneas van dedicadas a todas esas personas.
    [Show full text]
  • Mass Spectrometry-Based Proteomics Analysis of Bioactive Proteins in EMD That Modulate Adhesion of Gingival Fibroblast to Improve Bio-Integration of Dental Implants
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-28-2019 3:00 PM Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants David Zuanazzi Machado Jr The University of Western Ontario Supervisor Siqueira, Walter L. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © David Zuanazzi Machado Jr 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biochemistry Commons, Dental Materials Commons, Oral Biology and Oral Pathology Commons, and the Periodontics and Periodontology Commons Recommended Citation Zuanazzi Machado, David Jr, "Mass Spectrometry-Based Proteomics Analysis Of Bioactive Proteins In EMD That Modulate Adhesion Of Gingival Fibroblast To Improve Bio-Integration Of Dental Implants" (2019). Electronic Thesis and Dissertation Repository. 6064. https://ir.lib.uwo.ca/etd/6064 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i ABSTRACT Titanium (Ti) implants are used in dental practice to replace damaged or lost teeth. For effective treatment, the dental implant needs to integrate with the surrounding hard and soft tissues on the implant site. Despite improvements in bone-implant integration that have been achieved through surface modifications, the integration with the soft tissues is still deficient. The oral mucosa that embraces the transmucosal component of the implant only contacts the surface without making a strong attachment with the connective tissue.
    [Show full text]
  • Impaired Replication Timing Promotes Tissue-Specific Expression
    G C A T T A C G G C A T genes Article Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites Klizia Maccaroni 1, Elisa Balzano 1, Federica Mirimao 1, Simona Giunta 2,* and Franca Pelliccia 1,* 1 Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy; [email protected] (K.M.); [email protected] (E.B.); [email protected] (F.M.) 2 The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA * Correspondence: [email protected] (S.G.); [email protected] (F.P.) Received: 11 February 2020; Accepted: 6 March 2020; Published: 19 March 2020 Abstract: Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines.
    [Show full text]
  • Molecular Network Pathway of ERBB in Diffuse-Type Gastric Cancer
    Research Article iMedPub Journals Journal of Clinical Epigenetics 2018 www.imedpub.com ISSN 2472-1158 Vol.4 No.2:13 DOI: 10.21767/2472-1158.100098 Molecular Network Pathway of Shihori Tanabe1*, Kazuhiko Aoyagi2, ERBB In Diffuse-Type Gastric Cancer: Hiroshi Yokozaki3 and Mesenchymal Stem Cells and Epithelial- Hiroki Sasaki2 Mesenchymal Transition 1 Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, Kawasaki, Japan Abstract 2 Department of Translational Oncology, Epithelial-mesenchymal transition (EMT) is related to malignancy and metastasis FIOC, National Cancer Center Research in cancer. The molecular networks including tyrosine kinases are altered in gastric Institute, Tokyo, Japan cancer (GC). This study aims to reveal the role of ERBBs (erb-b2 receptor tyrosine 3 Department of Pathology, Kobe kinases) in EMT, and generate the molecular network pathway of ERBBs in diffuse- University of Graduate School of type GC and mesenchymal stem cells (MSCs). The expression of ERBB genes was Medicine, Kobe, Japan analyzed in MSCs and diffuse-type GC which has mesenchymal characteristics compared to intestinal-type GC. The signaling and molecular network of ERBB was analyzed using several databases, including cBioPortal for Cancer Genomics, Kyoto *Corresponding author: Encyclopedia of Genes and Genomes (KEGG), BioGRID and VaProS. ERBB2 and Shihori Tanabe, PhD ERBB3 gene expression were up-regulated in diffuse-type GC compared to MSCs. The ERBB3 molecular network includes epidermal growth factor receptor (EGFR), [email protected] cadherin 1 (CDH1), catenin beta 1 (CTNNB1) and EPH receptor A5 (EPHA5). These results demonstrate the importance of the ERBB network in cancer signaling, and revealed a ERBB3 network pathway model in diffuse-type GC and MSCs, and EMT.
    [Show full text]